The Influence of ZnO Components on the Photocatalytic Activity of Fe3O4-CuO-ZnO Nanocomposites

Article Preview

Abstract:

Nanocomposite Fe3O4-CuO-ZnO with different molar ratio of Fe3O4:CuO:ZnO were synthesized using sol-gel method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, field emission scanning electron microscope, UV-visible diffuse reflectance spectroscopy and vibrating sample magnetometer. The characterization results manifested that the combination of Fe3O4, CuO and ZnO nanoparticles was successful. The photocatalytic activity of nanocomposite with the molar ratio of 1:1:5 was more effective in the degradation of methylene blue under UV light irradiation than pure Fe3O4, CuO, ZnO. The role of photoactive species involved in the photocatalytic reaction was studied and found that holes play the most important role in photodegradation of methylene blue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-232

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Safavi, S. Momeni, Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4, Journal of Hazardous Materials 201-202 (2012) 125-131.

DOI: 10.1016/j.jhazmat.2011.11.048

Google Scholar

[2] J. Xie, H. Wang, M. Duan, L. Zhang, Synthesis and photocatalysis properties of ZnO structures with different, Applied Surface Science 257 (2011) 6358-6363.

DOI: 10.1016/j.apsusc.2011.01.105

Google Scholar

[3] J. Zhu, H. Fan, J. Sun, S. Ali, Anion-exchange precipitation synthesis of alfa-Ag2WO4/Zn-Cr layered double hydroxides composite with enhanced visible-light-driven photocatalytic activity, Separation and Purification Technology 120 (2013) 134-140.

DOI: 10.1016/j.seppur.2013.09.043

Google Scholar

[4] Y. Liu, H. Lv, S. Li, X. Xing, G. Xi, Preparation and photocatalytic property of hexagonal cylinder-like bipods ZnO microcrystal photocatalyst, Dyes and Pigments 95 (2012) 443-449.

DOI: 10.1016/j.dyepig.2012.05.027

Google Scholar

[5] A. Moulahi, F. Sediri, N. Gharbi, Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties, Materials Research Bulletin 47 (2012) 667-671.

DOI: 10.1016/j.materresbull.2011.12.027

Google Scholar

[6] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxide: A review, Journal of Hazardous Materials 211-212 (2012) 317-331.

DOI: 10.1016/j.jhazmat.2011.10.016

Google Scholar

[7] X. -H. Guo, J. -Q. Ma, H. -G. Ge, Preparation, characterization, and photocatalytic of pear-shaped ZnO/Ag core-shell submicrospheres, Journal of Physics and Chemistry of Solids 74 (2013) 784-788.

DOI: 10.1016/j.jpcs.2013.01.024

Google Scholar

[8] P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol-gel method, Thin Solid Films (2012) 5561-5567.

DOI: 10.1016/j.tsf.2012.04.050

Google Scholar

[9] R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalyic activity of ZnO/CuO nanocomposite for degradation of textile dye on visible light illumination, Materials Science and Engineering C (2013).

DOI: 10.1016/j.msec.2012.08.011

Google Scholar

[10] J. Xia, A. Wang, X. Liu, Z. Su, Preparation and characterization of bifunctional Fe3O4/ZnO nanocomposites and their use as photocatalyst, Applied Surface Science 257 (2011) 9724-9732.

DOI: 10.1016/j.apsusc.2011.05.114

Google Scholar

[11] X. Feng, H. Guo, K. Patel, H. Zhou, X. Lou, High performance, recoverable Fe3O4-ZnO nanoparticles for enhanced photocatalytic degradation of phenol, Chemical Engineering Journal 244 (2014) 327-334.

DOI: 10.1016/j.cej.2014.01.075

Google Scholar

[12] J. Sui, J. Li, Z. Li, W. Cai, Synthesis and characterization of one-dimensional magnetic photocatalytic CNTs/ Fe3O4-ZnO nanohybrids, Material Chemistry and Physics 134 (2012) 229-234.

DOI: 10.1016/j.matchemphys.2012.02.057

Google Scholar

[13] Z. -P. Yang, X. -Y. Gong, C. -J. Zhang, Recyclable Fe3O4/hydroxyapatite composite nanoparticles for photocatalytic applications, Chemical Engineering Journal 165 (2010) 117-121.

DOI: 10.1016/j.cej.2010.09.001

Google Scholar

[14] S. Shaker, S. Zafarian, C. S. Chakra, K. V. Rao, Preparation and characterization of magnetite nanoparticles by sol-gel method for water treatment, International Journal of Innovative Research in Science, Engineering and Technology 2 (2013).

Google Scholar

[15] Y. Aparna, K. V. Rao & P. S. Subbarao, Preparation and characterization of CuO Nanoparticles by novel sol-gel technique, Journal of Nano- and Electronic Physics (2012) 1-4.

Google Scholar

[16] R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding, D. G. Wei, Preparation, characterization, and application Fe3O4/ZnO core/shell magnetic nanoparticles, Materials Resarch Bulletin 43 (2008) 2457-2468.

DOI: 10.1016/j.materresbull.2007.07.035

Google Scholar

[17] A. Hamrouni, H. Lachheb, A. Houas, Short communication Synthesis, characterization and photocatalytic activity of ZnO-SnO2, Materials Science and Engineering B 178 (2013) 1371-1379.

DOI: 10.1016/j.mseb.2013.08.008

Google Scholar

[18] M. Sahooli, S. Sabbaghi, R. Saboori, Synthesis and characterization of mono sized CuO nanoparticles, Materials Letters 81 (2012) 169-172.

DOI: 10.1016/j.matlet.2012.04.148

Google Scholar

[19] S. S Alias, A. B Ismail, A. A Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation, Journal of Alloys and Compounds 499 (2010) 231-237.

DOI: 10.1016/j.jallcom.2010.03.174

Google Scholar

[20] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Engineering 27 (2012) 632-637.

DOI: 10.1016/j.proeng.2011.12.498

Google Scholar

[21] W. Lu, Y. Shen, A. Xie, W. Zhang, Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles, Journal of Magnetism and Magnetic Materials 322 (2010) 1828-1833.

DOI: 10.1016/j.jmmm.2009.12.035

Google Scholar

[22] T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Applied Surface Science 311 (2014) 602-608.

DOI: 10.1016/j.apsusc.2014.05.116

Google Scholar

[23] A. Roychowdhury, S. P. Pati, A. K. Mishra, S. Kumar, D. Das, Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies, Journal of Physic and Chemistry of Solids 74 (2013) 811-818.

DOI: 10.1016/j.jpcs.2013.01.012

Google Scholar

[24] Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, S. Yang, CuO nanostructures: Synthesis, characterization, growth and mechanism, fundamental properties, and applications, Progress in Material Science 60 (2014) 208-337.

DOI: 10.1016/j.pmatsci.2013.09.003

Google Scholar

[25] B. Hapke, Theory of Reflectance and Emittance Spectroscopy, Cambridge: University Press (1993).

Google Scholar