Transition Metal (Ni, Cr)-Doped ZnO Assisted CTAB Performance on Decolorization of Organic Dyes

Article Preview

Abstract:

A series of semiconductor nanophotocatalyst based on transition metal (Ni and Cr) doped ZnO nanoparticles have been synthesized in the presence of cetril methyl ammonium bromide (CTAB) by co-precipitation method. Samples were characterized by X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX), Field Emission Scanning Electron Microscope (FESEM), and Brunauer-Emmet-Teller (BET) method. The resulting materials were explored for the decolorization of 4 different organic dyes (methyl orange, methylene blue, malachite green, and congo red) under UV light irradiation. The resulting materials exhibited relatively higher photocatalytic decolorization than bare Ni- and Cr-doped ZnO nanoparticles with similar doping concentration

You might also be interested in these eBooks

Info:

Periodical:

Pages:

289-294

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Rauf, S.B. Bukallah, A. Hammadi, A. Soliman, F. Hammadi, The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2, Chem. Eng. J. 129 (2007) 167-172.

DOI: 10.1016/j.cej.2006.10.031

Google Scholar

[2] N. M. Mahmoodi, M. Arami, N.Y. Limaee, N.S. Tabrizi, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Col. Interface Sci. 295 (2006) 159-164.

DOI: 10.1016/j.jcis.2005.08.007

Google Scholar

[3] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, J. Hazard. Mater. 170 (2009) 520-529.

DOI: 10.1016/j.jhazmat.2009.05.039

Google Scholar

[4] X. Cai, Y. Cai, Y. Liu, H. Li, F. Zhang, Y. Wang, Structural and photocatalytic properties of nickel-doped zinc oxide powders with variable dopant contents, J. Phy. Chem. Sol. 74 (2013) 1196-1203.

DOI: 10.1016/j.jpcs.2013.03.016

Google Scholar

[5] D. Chu, Y.P. Zheng, D. Jiang, Synthesis and growth mechanism of Cr-doped ZnO single-crystalline nanowires, Solid State Commun. 143 (2007) 308-312.

DOI: 10.1016/j.ssc.2007.05.036

Google Scholar

[6] S. Suwanboon, P. Amornpitoksuk. N. Muensit, Dependence of photocatalytic activity on structural and optical properties of nanocrystalline ZnO powders, Ceramics Int. 37 (2011) 2247-2253.

DOI: 10.1016/j.ceramint.2011.03.016

Google Scholar

[7] J. Zhong, J. Ji, Z. Xiao, W. Hu, X. Zhou, X. Zheng, Improved photocatalytic performance of ZnO prepared by sol–gel method with the assistance of CTAB, Mater. Lett. 91 (2013) 301-303.

DOI: 10.1016/j.matlet.2012.10.040

Google Scholar

[8] R. Salma, F. Ghribi, A. Houas, C. Barthou, L. El Mir, Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder, Thin Solid Films 519 (2011) 5792-5795.

DOI: 10.1016/j.tsf.2010.12.197

Google Scholar

[9] C. Wang, H. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci. 257 (2011) 6873-6877.

DOI: 10.1016/j.apsusc.2011.03.021

Google Scholar

[10] M.I. Litter, J.A. Navio, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol. A 98 (1996) 171-181.

Google Scholar

[11] B. Haspulat, A. Gulce, H. Gulce, Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate, J. Hazard. Mater. 260 (2013) 518-526.

DOI: 10.1016/j.jhazmat.2013.06.011

Google Scholar

[12] P. Jongnavakit, A. Amornpitoksuk, S. Suwanboon, N. Ndiege, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol-gel method, Appl. Surf. Sci. 258 (2012) 8192-8198.

DOI: 10.1016/j.apsusc.2012.05.021

Google Scholar

[13] A.N. Okte, Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts, Appl. Catal. A: General 475 (2014) 27-39.

DOI: 10.1016/j.apcata.2014.01.019

Google Scholar

[14] A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite, J. Indust. Eng. Chem. 20 (2014) 937-946.

DOI: 10.1016/j.jiec.2013.06.026

Google Scholar

[15] S. Ekamabram, Y. Ikubo, A. Kudo, Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO, J. Alloy. Comp. 433 (2007) 273-240.

Google Scholar

[16] C. Karunakaran, V. Rajeswari, P. Gomanthisankar, Enhanced photocatalytic and antibacterial activities of sol-gel synthesized ZnO and Ag-ZnO, Mater. Sci. Semicond. Process. 14 (2011) 133-138.

DOI: 10.1016/j.mssp.2011.01.017

Google Scholar

[17] R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 130 (2014) 581–590.

DOI: 10.1016/j.saa.2014.03.089

Google Scholar

[18] R. Saleh, N. F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microstruct. 74 (2014) 217-233.

DOI: 10.1016/j.spmi.2014.06.013

Google Scholar

[19] L. G. Devi, N. Kottam, B. N. Murthy, S. G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+, and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/Solar light, J. Mol. Catal. A: Chem. 328 (2010).

DOI: 10.1016/j.molcata.2010.05.021

Google Scholar

[20] Q. Xiao, J. Zhang, C. Xiao, Z. Xi, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Sol. Energy 82 (2008) 706-713.

DOI: 10.1016/j.solener.2008.02.006

Google Scholar

[21] A. Sharma, P. Rao, R. P. Mathur, S. C. Ameta, Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powders, J. Photochem. Photobiol. A: Chem. 86 (1995) 197-200.

DOI: 10.1016/1010-6030(94)03933-l

Google Scholar