[1]
A. Muhammad, A. Shafeeq, M. A. Butt, Z. H. Rizvi, M. A. Chughtai, S. Rehman, Decolorization and removal of COD and BOD from raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS), Braz. J. Chem. Eng. 25 (2008).
DOI: 10.1590/s0104-66322008000300003
Google Scholar
[2]
S. Chakrabarti, B. K. Dutta, Photocatalytic Degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. B112 (2004) 269-278.
DOI: 10.1016/j.jhazmat.2004.05.013
Google Scholar
[3]
M. A. Rauf, M. A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J. 157 (2010) 373-378.
DOI: 10.1016/j.cej.2009.11.017
Google Scholar
[4]
S. Baruah, J. Duta, Effect of seeded substrates on hydrothermally grown ZnO nanorods, J. Sol-Gel Sci. Technol. 50 (2009) 456-464.
DOI: 10.1007/s10971-009-1917-2
Google Scholar
[5]
F. Pan, C. Song, X. Liu, Y. Yang, F. Zeng, Ferromagnetism and Possible Application in Spintronics of Transition-Metal-doped ZnO Films, Mater. Sci. Eng., R 62 (2008) 1-35.
DOI: 10.1016/j.mser.2008.04.002
Google Scholar
[6]
D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys. 132 (2012) 673-681.
DOI: 10.1016/j.matchemphys.2011.11.085
Google Scholar
[7]
D. Li, J. F. Huang, L. Y. Cao, H. B. OuYang, J. Y. Li, C. Y. Yao, Microwave hydrothermal synthesis of K+ doped ZnO nanoparticles with enhanced photocatalytic properties under visible light, Mater. Lett. 118 (2014) 17-20.
DOI: 10.1016/j.matlet.2013.12.052
Google Scholar
[8]
W.G. Xu, S.F. Liu, S.X. Lu, S.Y. Kang, Y. Zhou, H.F. Zhang, Photocatalytic degradation in aqueous solution using quantum-sized ZnO particles supported on sepiolite, J. Colloid Interace Sci. 351 (2010) 210-216.
DOI: 10.1016/j.jcis.2010.07.052
Google Scholar
[9]
D. Li, J.F. Huang, L. Y Cao, J.Y. Li, H.B. OuYang, C.Y. Yao, Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties, Ceram. Int. 40 (2014) 2647-2653.
DOI: 10.1016/j.ceramint.2013.10.061
Google Scholar
[10]
R. Saleh, N. F. Djaja, S. P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, J. Alloys Compd. 546 (2013) 48-56.
DOI: 10.1016/j.jallcom.2012.08.056
Google Scholar
[11]
A. Singhal, Study of electronic and magnetic properties of vacuum annealed Cr doped ZnO, J. Alloys Compd. 515 (2012) 12-15.
DOI: 10.1016/j.jallcom.2011.11.103
Google Scholar
[12]
Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping don the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method, J. Alloys Compd. 486 (2009) 835-838.
DOI: 10.1016/j.jallcom.2009.07.076
Google Scholar
[13]
S. Chakma, J.B. Bhasarkar, V. S. Moholkar, Preparation, Characterization and Application of Sonochemically doped Fe3+ into ZnO Nanoparticles, Int. J. of Res. Eng. Tech. 2 (2013) 177-183.
Google Scholar
[14]
A. Hernandez, L. Maya, E. S. Mora, E. M. Sanchez, Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3, J. Sol-Gel Sci. Technol. 42 (2007) 71-78.
DOI: 10.1007/s10971-006-1521-7
Google Scholar
[15]
D. Liu, P. Yuan, H. Liu, J. Cai, D. Tan, H. He, J. Zhu, T. Chen, Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system, Appl. Clay Sci. 80-81 (2013) 407-412.
DOI: 10.1016/j.clay.2013.07.006
Google Scholar
[16]
P. T. Bertuoli, D. Piazza, L. C. Scienza, A. J. Zattera, Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane, Appl. Clay Sci. 87 (2014) 46-51.
DOI: 10.1016/j.clay.2013.11.020
Google Scholar
[17]
N. Sarier, E. Onder, S. Ersoy, The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process, Colloids Surf., A 371 (2010) 40-49.
DOI: 10.1016/j.colsurfa.2010.08.061
Google Scholar
[18]
J. Das, I.R. Evans, D. Khushalani, Zinc Glycolate: A precursor to ZnO, Inorganic Chemistry 48 (2009) 3508-3510.
DOI: 10.1021/ic900067w
Google Scholar
[19]
S. P. Prakoso, R. Saleh, Synthesis and Spectroscopic Characterization of Undoped Nanocrystalline ZnO Particles Prepared by Co-Precipitation, Mater. Sci. Appl. 3 (2012) 530-547.
DOI: 10.4236/msa.2012.38075
Google Scholar
[20]
B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).
Google Scholar
[21]
C. Wu, L. Shen, Y. Cai Zhang, Q. Huang, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett. 65 (2011) 1794-1796.
DOI: 10.1016/j.matlet.2011.03.070
Google Scholar
[22]
S. Yi, J. Cui, S. Li, L. Zhang, D. Wang, Y. Lin, Enhanced visible light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties, Appl. Surf. Sci. 319 (2014) 230-236.
DOI: 10.1016/j.apsusc.2014.06.151
Google Scholar
[23]
R. Saleh, N.F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microst. 74 (2014) 217-233.
DOI: 10.1016/j.spmi.2014.06.013
Google Scholar
[24]
C.J. Chang, T.L. Yang, Y.C. Weng, Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity, J. Solid State Chem. 214 (2014) 101-107.
DOI: 10.1016/j.jssc.2013.09.039
Google Scholar
[25]
S. Kansai, N. Kaur, S. Singh, Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts, Nanoscale Res. Lett. 4 (2009) 709-716.
DOI: 10.1007/s11671-009-9300-3
Google Scholar
[26]
W. F. Yao, X. H. Xu, H. Wang, J.T. Zhou, X.N. Yang, Y. Zhang, X. Shang, B.B. Huang, Photocatalytic property of perovskite bismuth titanate, Appl. Catal., B 52 (2004) 109-116.
DOI: 10.1016/j.apcatb.2004.04.002
Google Scholar
[27]
N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue, Thin Solid Films 518 (2010) 2210-2215.
DOI: 10.1016/j.tsf.2009.07.135
Google Scholar
[28]
L.S. Qian, Z.P. Jiang, Z.W. Shun, C. Sheng, P. Hong, Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation, J. Alloys Compd. 616 (2014) 227-234.
DOI: 10.1016/j.jallcom.2014.07.102
Google Scholar
[29]
H. Nouri, A.H. Yangjeh, Microwave-assisted method for preparation of Zn1-xMgxO nanostructures and their activities for photodegradation of methylene blue, Adv. Powder Technol. 25 (2014) 1016 -1025.
DOI: 10.1016/j.apt.2014.01.025
Google Scholar