Montmorillonite Incorporated in Cr Doped ZnO Nanoparticles for Degradation of Organic Dyes in Water under UV Light Irradiation

Article Preview

Abstract:

In this study, the photocatalytic degradation of methylene blue and congo red has been investigated using montmorillonite modified Cr-doped ZnO nanoparticles. Chromium doped zinc oxide nanoparticles were synthesized by co-precipitation method and were characterized using X-ray diffraction, Fourier-transform infrared absorption and UV-visible spectrophotometer. Furthermore these nanoparticles were explored to degradation of methylene blue and congo red in aqueous solution as model of organic pollutant under UV light irradiation. Comparison of degradation efficiency demonstrated that Cr-doped ZnO nanoparticles modified montmorillonite exhibited higher activity than pure Cr-doped ZnO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-321

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Muhammad, A. Shafeeq, M. A. Butt, Z. H. Rizvi, M. A. Chughtai, S. Rehman, Decolorization and removal of COD and BOD from raw and biotreated textile dye bath effluent through advanced oxidation processes (AOPS), Braz. J. Chem. Eng. 25 (2008).

DOI: 10.1590/s0104-66322008000300003

Google Scholar

[2] S. Chakrabarti, B. K. Dutta, Photocatalytic Degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater. B112 (2004) 269-278.

DOI: 10.1016/j.jhazmat.2004.05.013

Google Scholar

[3] M. A. Rauf, M. A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J. 157 (2010) 373-378.

DOI: 10.1016/j.cej.2009.11.017

Google Scholar

[4] S. Baruah, J. Duta, Effect of seeded substrates on hydrothermally grown ZnO nanorods, J. Sol-Gel Sci. Technol. 50 (2009) 456-464.

DOI: 10.1007/s10971-009-1917-2

Google Scholar

[5] F. Pan, C. Song, X. Liu, Y. Yang, F. Zeng, Ferromagnetism and Possible Application in Spintronics of Transition-Metal-doped ZnO Films, Mater. Sci. Eng., R 62 (2008) 1-35.

DOI: 10.1016/j.mser.2008.04.002

Google Scholar

[6] D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys. 132 (2012) 673-681.

DOI: 10.1016/j.matchemphys.2011.11.085

Google Scholar

[7] D. Li, J. F. Huang, L. Y. Cao, H. B. OuYang, J. Y. Li, C. Y. Yao, Microwave hydrothermal synthesis of K+ doped ZnO nanoparticles with enhanced photocatalytic properties under visible light, Mater. Lett. 118 (2014) 17-20.

DOI: 10.1016/j.matlet.2013.12.052

Google Scholar

[8] W.G. Xu, S.F. Liu, S.X. Lu, S.Y. Kang, Y. Zhou, H.F. Zhang, Photocatalytic degradation in aqueous solution using quantum-sized ZnO particles supported on sepiolite, J. Colloid Interace Sci. 351 (2010) 210-216.

DOI: 10.1016/j.jcis.2010.07.052

Google Scholar

[9] D. Li, J.F. Huang, L. Y Cao, J.Y. Li, H.B. OuYang, C.Y. Yao, Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties, Ceram. Int. 40 (2014) 2647-2653.

DOI: 10.1016/j.ceramint.2013.10.061

Google Scholar

[10] R. Saleh, N. F. Djaja, S. P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, J. Alloys Compd. 546 (2013) 48-56.

DOI: 10.1016/j.jallcom.2012.08.056

Google Scholar

[11] A. Singhal, Study of electronic and magnetic properties of vacuum annealed Cr doped ZnO, J. Alloys Compd. 515 (2012) 12-15.

DOI: 10.1016/j.jallcom.2011.11.103

Google Scholar

[12] Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Y. Wang, B. Feng, J. Cao, X. Liu, Y. Yang, M. Wei, Effects of Cr-doping don the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method, J. Alloys Compd. 486 (2009) 835-838.

DOI: 10.1016/j.jallcom.2009.07.076

Google Scholar

[13] S. Chakma, J.B. Bhasarkar, V. S. Moholkar, Preparation, Characterization and Application of Sonochemically doped Fe3+ into ZnO Nanoparticles, Int. J. of Res. Eng. Tech. 2 (2013) 177-183.

Google Scholar

[14] A. Hernandez, L. Maya, E. S. Mora, E. M. Sanchez, Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3, J. Sol-Gel Sci. Technol. 42 (2007) 71-78.

DOI: 10.1007/s10971-006-1521-7

Google Scholar

[15] D. Liu, P. Yuan, H. Liu, J. Cai, D. Tan, H. He, J. Zhu, T. Chen, Quantitative characterization of the solid acidity of montmorillonite using combined FTIR and TPD based on the NH3 adsorption system, Appl. Clay Sci. 80-81 (2013) 407-412.

DOI: 10.1016/j.clay.2013.07.006

Google Scholar

[16] P. T. Bertuoli, D. Piazza, L. C. Scienza, A. J. Zattera, Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane, Appl. Clay Sci. 87 (2014) 46-51.

DOI: 10.1016/j.clay.2013.11.020

Google Scholar

[17] N. Sarier, E. Onder, S. Ersoy, The modification of Na-montmorillonite by salts of fatty acids: An easy intercalation process, Colloids Surf., A 371 (2010) 40-49.

DOI: 10.1016/j.colsurfa.2010.08.061

Google Scholar

[18] J. Das, I.R. Evans, D. Khushalani, Zinc Glycolate: A precursor to ZnO, Inorganic Chemistry 48 (2009) 3508-3510.

DOI: 10.1021/ic900067w

Google Scholar

[19] S. P. Prakoso, R. Saleh, Synthesis and Spectroscopic Characterization of Undoped Nanocrystalline ZnO Particles Prepared by Co-Precipitation, Mater. Sci. Appl. 3 (2012) 530-547.

DOI: 10.4236/msa.2012.38075

Google Scholar

[20] B. Hapke, Theory of Reflectance and Emittance Spectroscopy, University Press, Cambridge, (1993).

Google Scholar

[21] C. Wu, L. Shen, Y. Cai Zhang, Q. Huang, Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity, Mater. Lett. 65 (2011) 1794-1796.

DOI: 10.1016/j.matlet.2011.03.070

Google Scholar

[22] S. Yi, J. Cui, S. Li, L. Zhang, D. Wang, Y. Lin, Enhanced visible light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties, Appl. Surf. Sci. 319 (2014) 230-236.

DOI: 10.1016/j.apsusc.2014.06.151

Google Scholar

[23] R. Saleh, N.F. Djaja, UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles, Superlattices Microst. 74 (2014) 217-233.

DOI: 10.1016/j.spmi.2014.06.013

Google Scholar

[24] C.J. Chang, T.L. Yang, Y.C. Weng, Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity, J. Solid State Chem. 214 (2014) 101-107.

DOI: 10.1016/j.jssc.2013.09.039

Google Scholar

[25] S. Kansai, N. Kaur, S. Singh, Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts, Nanoscale Res. Lett. 4 (2009) 709-716.

DOI: 10.1007/s11671-009-9300-3

Google Scholar

[26] W. F. Yao, X. H. Xu, H. Wang, J.T. Zhou, X.N. Yang, Y. Zhang, X. Shang, B.B. Huang, Photocatalytic property of perovskite bismuth titanate, Appl. Catal., B 52 (2004) 109-116.

DOI: 10.1016/j.apcatb.2004.04.002

Google Scholar

[27] N. Talebian, M.R. Nilforoushan, Comparative study of the structural, optical and photocatalytic properties of semiconductor metal oxides toward degradation of methylene blue, Thin Solid Films 518 (2010) 2210-2215.

DOI: 10.1016/j.tsf.2009.07.135

Google Scholar

[28] L.S. Qian, Z.P. Jiang, Z.W. Shun, C. Sheng, P. Hong, Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation, J. Alloys Compd. 616 (2014) 227-234.

DOI: 10.1016/j.jallcom.2014.07.102

Google Scholar

[29] H. Nouri, A.H. Yangjeh, Microwave-assisted method for preparation of Zn1-xMgxO nanostructures and their activities for photodegradation of methylene blue, Adv. Powder Technol. 25 (2014) 1016 -1025.

DOI: 10.1016/j.apt.2014.01.025

Google Scholar