[1]
P. -C. Aïtcin, S. Mindess, Sustainability of concrete, New York: Spon Press, 2011, ISBN 978-0-203-85663-5.
DOI: 10.1016/b978-0-08-100693-1.15003-9
Google Scholar
[2]
F.G. Collins, J.G. Sanjayan, Workability and mechanical properties of alkali activated slag concrete, Cem. Concr. Res. 29 (1999) 455-458.
DOI: 10.1016/s0008-8846(98)00236-1
Google Scholar
[3]
T. Bakharev, J.G. Sanjayan, Y. -B. Cheng, Resistance of alkali-activated slag concrete to acid attack, Cem. Concr. Res. 33 (2003) 1607-1611.
DOI: 10.1016/s0008-8846(03)00125-x
Google Scholar
[4]
T. Bakharev, J.G. Sanjayan, Y. -B. Cheng, Sulfate effect on alkali-activated slag concrete, Cem. Concr. Res. 32 (2002) 211-216.
DOI: 10.1016/s0008-8846(01)00659-7
Google Scholar
[5]
C. Shi, P. Xie, Interface between cement paste and quartz sand in alkali-activated slag mortars, Cem. Concr. Res. 28 (1998) 8787-896.
DOI: 10.1016/s0008-8846(98)00050-7
Google Scholar
[6]
R. San Nicolas, S.A. Bernal, R. Mejía de Gutiérrez, J.S.J. van Deventer, J.L. Provis, Distinctive microstructural features of aged sodium silicate-activated slag concretes, Cem. Concr. Res. 65 (2014) 41-51.
DOI: 10.1016/j.cemconres.2014.07.008
Google Scholar
[7]
M. Palacios, F. Puertas, Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars, ACI Mater. J., 108 (2011) 73-78.
DOI: 10.14359/51664218
Google Scholar
[8]
A.A. Melo Neto, M.A. Cincotto, W. Repette, Drying and autogenous shrinkage of pastes and mortars with activated slag cement, Cem. Concr. Res. 38 (2008) 565-574.
DOI: 10.1016/j.cemconres.2007.11.002
Google Scholar
[9]
S. Aydin, A ternary optimisation of mineral additives of alkali activated cement mortars, Constr. Build. Mater. 43 (2013) 131-138.
DOI: 10.1016/j.conbuildmat.2013.02.005
Google Scholar
[10]
J.S. Alcaide, E.G. Alcocel, F. Puertas, R. Lapuente, P. Garcés, Carbon fibre-reinforced, alkali-activated slag mortars, Materiales de Construcción. 57 (2007) 33-48.
DOI: 10.3989/mc.2007.v57.i288.63
Google Scholar
[11]
N. Marjanović, M. Komljenović, Z. Baščarević, V. Nikolić, R. Petrović, Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends, Ceram. Int. 41 (2015) 1421-1435.
DOI: 10.1016/j.ceramint.2014.09.075
Google Scholar
[12]
A.R. Sakulich, D.P. Bentz, Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing, Mater. Struct. 46 (2013) 1355-1367.
DOI: 10.1617/s11527-012-9978-z
Google Scholar
[13]
M. Palacios, F. Puertas, Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cem. Conr. Res. 37 (2007) 691-702.
DOI: 10.1016/j.cemconres.2006.11.021
Google Scholar
[14]
C. Bilim, O. Karahan, C.D. Atiş, S. İlkentapar, Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions, Mater. Des. 44 (2013) 540-547.
DOI: 10.1016/j.matdes.2012.08.049
Google Scholar
[15]
T. Bakharev, J.G. Sanjayan, Y. Cheng, Effect of admixtures on properties of alkali-activated slag concrete, Cem. Concr. Res. 30 (2000) 1367-1374.
DOI: 10.1016/s0008-8846(00)00349-5
Google Scholar
[16]
F. Rajabipour, G. Sant, J. Weiss, Interactions between shrinkage reducing admixtures (SRA) and cement paste's pore solution, Cem. Concr. Res. 38 (2008) 606-615.
DOI: 10.1016/j.cemconres.2007.12.005
Google Scholar