Overview on Mechanical-Chemical Ionic Liquid Pretreatment Study on Bioethanol–Based Lignocellulosics Biomass

Article Preview

Abstract:

Due to rapid growth in population and industrialization, worldwide ethanol demand is increasing continuously. The abundant sources of lignocellulosic biomass (LB) from agricultural wastes are attractive feed stocks to become a sustainable source for bioethanol production. There are many crucial engineering steps involved in the bioethanol production route especially on the pretreatment which comprises of chemical, mechanical and biological approaches. In this study we reviewed the various pretreatment involved in biofuel production. By considering the all steps required which may incur costs then influence the price of bioethanol an effective pretreatment technology is required for minimizing the cost and concurrently minimizing other problem especially environmental pollution caused by the pretreatment process. Therefore, a compact step combining all or some of the steps and with additional application of green technology with ionic liquid (IL) will be beneficial to the future direct production of liquefied biofuel with chemical-mechanical-biological based techniques starting from the pretreatment study which therefore lessen cost incurred and process time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

260-265

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chun-Zhao Liu, Feng Wang, Amanda R. Stiles, Chen Guo, (2012). Ionic liquids for biofuel production, In: Opportunities and challenges Applied Energy vol. 92, p.406–414.

DOI: 10.1016/j.apenergy.2011.11.031

Google Scholar

[2] Nibedita Sarkar, Sumanta Kumar Ghosh, Satarupa Bannerjee, Kaustav Aikat, (2012). Bioethanol production from agricultural wastes, In: An overview. Renewable Energy vol. 37, pp.19-27.

DOI: 10.1016/j.renene.2011.06.045

Google Scholar

[3] Gabriela Ghizzi D. Silva, M. C. -G, (2012). Effects of grinding processes on enzymatic degradation of wheat straw, Technology vol. 103, pp.192-200.

Google Scholar

[4] Tony Vancov, Amy-Sue Alston, Trevor Brownb, Shane McIntosh, (2012). Use of ionic liquids in converting lignocellulosic material to biofuels, In : Renewable Energy vol. 45, pp.1-6.

DOI: 10.1016/j.renene.2012.02.033

Google Scholar

[5] Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M., (2005). Features of promising technologies for pretreatment of lignocellulosic biomass, In: Bioresource Technology vol. 96, pp.673-686.

DOI: 10.1016/j.biortech.2004.06.025

Google Scholar

[6] Maria Teresa García-Cubero, M. C. -B., (2010). Chemical Oxidation with Ozone as Pre-treatment of Lignocellulosic Materials for Bioethanol Production, In: Chemical Engineering Transactions, pp.1273-1278.

Google Scholar

[7] Kratky L., Jirout T., (2011). Biomass Size Reduction Machines for Enhancing Biogas Production, In: Chemical Engineering & Technology vol. 34(3), pp.391-399.

DOI: 10.1002/ceat.201000357

Google Scholar

[8] Qingqi Yan, M. M., (2012). Mechanical Pretreatment of Lignocellulosic Biomass Using a Screw Press as an Essential Step in the Biofuel Production, In: Chemical engineering transaction vol. 29, pp.601-606.

Google Scholar

[9] Cardona CA, Quintero JA, Paz IC, (2010). Production of bioethanol from sugarcane bagasse status and perspectives, In : Bioresource Technology vol. 101(13), pp.4754-4766.

DOI: 10.1016/j.biortech.2009.10.097

Google Scholar

[10] Verónica García, V. G., (2011). Challenges in biobutanol production: How to improve the efficiency?, In : Renewable and Sustainable Energy Reviews, vol. 15, p.964–980.

DOI: 10.1016/j.rser.2010.11.008

Google Scholar

[11] Taherzadeh M.J., Karimi K., (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review, In: BioResources vol. 2, p.472–99.

Google Scholar

[12] Pandey A, Soccol CR, Nigam P, Soccol V.T., (2000). Biotechnological potential of agro-industrial residues sugarcane baggase, In: Bioresource Technology vol 74, pp.69-80.

DOI: 10.1016/s0960-8524(99)00142-x

Google Scholar

[13] M. Saritha, A. A., (2012). Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility, In: Indian J Microbiol, vol. 52(2), p.122–130.

DOI: 10.1007/s12088-011-0199-x

Google Scholar

[14] Rodolfo Travaini, M. D. -S., (2012). Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation, In: Bioresource Technology vol. 133, p.332–339.

DOI: 10.1016/j.biortech.2013.01.133

Google Scholar

[15] Yu, Z., Jameel, H., Chang, H. -M., Park S., (2011). The effect of delignification of forest biomass on enzymatic hydrolysis, In: Biosource Technology vol. 102, p.9083–9089.

DOI: 10.1016/j.biortech.2011.07.001

Google Scholar

[16] Bian J., Peng F., X.P. Peng, Peng X. Xiao, Peng P., Xu F., R.C. Sun., (2013). Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100: 211-217.

DOI: 10.1016/j.carbpol.2013.02.059

Google Scholar

[17] Lopes A.M. da Costa, Joao K.G., Rubik D.F., Bogel-Lukasik E., Duarte L.C., Andreaus J., Bogel-Lukasik R., (2013). Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresource Technology, 142: 198–208.

DOI: 10.1016/j.biortech.2013.05.032

Google Scholar

[18] Zhao D., Li H., Zhang J., Fu L., Liu M., Fu J., Ren P., (2012). Dissolution of cellulose in phosphate-based ionic liquids. Carbohydrate Polymers, 87: 1490-1494.

DOI: 10.1016/j.carbpol.2011.09.045

Google Scholar

[19] Haykir N.I., Bahcegul E., Bicak N., Bakir U., (2013). Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Industrial Crops and Products, 41: 430-436.

DOI: 10.1016/j.indcrop.2012.04.041

Google Scholar

[20] Farid Talebnia, D.K., (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation, In: Bioresource Technology vol. 101, p.4744–4753.

DOI: 10.1016/j.biortech.2009.11.080

Google Scholar

[21] Balat M., (2011). Production of bioethanol from lignocellulosic materials via the biochemical, In: Energy Conversion and Management vol. 52 , p.858–875.

DOI: 10.1016/j.enconman.2010.08.013

Google Scholar

[22] Sun Y., Cheng J.Y., (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review, In: Bioresource Technology vol 83, p.10–11.

DOI: 10.1016/s0960-8524(01)00212-7

Google Scholar

[23] Teramoto Y., Lee S., Endo T., (2008). Pretreatment of woody andherbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking, In: Bioresource Technology vol. 99, p.8856.

DOI: 10.1016/j.biortech.2008.04.049

Google Scholar

[24] Azmi I.S., Azizan A., Ruzitah M.S., Jalil R., Sihab A.L., Ubong S., Idris N. (ii) Green Engineering Technologies in Bioethanol Production, In: IEEE Symposium on Humanities, Science and Engineering SHUSER (2013).

DOI: 10.4028/www.scientific.net/amr.701.243

Google Scholar

[25] C. Kamarludin S.N., Jainal M.S., Azizan A., Mohd Safaai N.S., Mohamad Daud A.R. 'Mechanical Pretreatment of Lignocellulosic Biomass Prior to Biofuel Production, In: The 3rd International Conference on Process Engineering and Advanced Material (ICPEAM 2014), 3-5 June 2014, Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia [ACCEPTED].

DOI: 10.4028/www.scientific.net/amm.625.838

Google Scholar

[26] Barakat A., Chuetor S., Monlau F., Solhy A., Rouau X., (2014). Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis, In: Applied Energy vol. 113, p.97–105.

DOI: 10.1016/j.apenergy.2013.07.015

Google Scholar