Effect of Silver Nanoparticles in Silicalite-1 Zeolite on Antireflection and Antibacterial Performances

Article Preview

Abstract:

A nano-sized zeolite has been prepared in an autoclave, using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH) and H2O at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the size of the nano-sized powders was revealed to be 10–300 nm and its distribution was uniform and spherical, depending on the hydrothermal temperature. X-ray diffraction analysis confirmed that the nano-sized powder was the silicalite-1 zeolite. A coating sol could be prepared by the proper combination of these nanoparticles with a solvent. The resulting coating on the glass substrate showed an antireflection effect, with less than 2–3% average reflectance over the visible range. In addition, the effect of silver nanoparticles in the silicalite-1 zeolite on antibacterial performances was carried as a function of the amount of nano-sized silver used. With increasing amounts of nano-sized silver, the number of colony forming unit decreased and became almost to zero.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-37

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Y. Hsu, Anthony, S. T. Chiang, R. Selvin, and Robert W. Thompson, J. Phys. Chem. B 109 (2005) 18804-18814.

Google Scholar

[2] R. Ravishankar, C. E. A. Kirschhock, P. -P. K. -Gerrits, E. J. P. Feijen, P. J. Grobet, P. Vanoppen, F. C. D. Schryver, G. Miehe, H. Fuess, B. J. Schoeman, P. A. Jacobs and J. A. Martens, J. Phys. Chem. B. 103 (1999) 4960-4964.

DOI: 10.1021/jp990296z

Google Scholar

[3] M. Vilaseca, J. Coronas, A. Cirera, A. Cornet, J. R. Morante, J. Santamaria, J. Catal. Today 82 (2003) 179-185.

DOI: 10.1016/s0920-5861(03)00230-x

Google Scholar

[4] A. Beganskiene, S. Sakirzanovas, I. Kazadojev, A. Melninkaitis, V. Sirutkaitis, A. Kareiva, Materials Science-Poland 25 (2007) 3.

Google Scholar

[5] A. Shokuhfar, E. Eghdam, M. Alzamani, Nanoscience and Nanotechnology 2(1) (2012) 22-25.

Google Scholar

[6] G. Wicht, R. Ferrini, S. Schuttel, L. Zuppiroli, Macromolecular Materials and Engineering, 295 (2010) 628-636.

Google Scholar

[7] A. S. T. Chiang, L. J. Wong, S. Y. Li, S. L. Cheng, C. C. Lee, K. L. Chen, S. M. Chen and Y. J. Lee, Study in surface science and catalyst 170 (2007) 1583-1589.

Google Scholar

[8] Y. H. Joe, W. Ju, J. H. An, J. H. Hwang, Aerosol and Air Quality Research, 14 (2014) 928-933.

Google Scholar

[9] Q. Li, D. Creaser, J. Sterte, Microporous and Mesoporous Materials 31 (1999) 141–150.

Google Scholar

[10] M.M.J. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, (4th Eds. ), Elsevier Science & Technology Books, Amsterdam - London - New York - Oxford - Paris - Shannon - Tokyo, 2001, pp.236-239.

DOI: 10.1016/b978-044450702-0/50116-7

Google Scholar

[11] B. Jarvis, A. J. Hedges, J. E.L. Corry, International Journal of Food Microbiology 116 (2007) 44-51.

Google Scholar

[12] Sonit Kumar Gogoi, P. Gopinath, Anumita Paul, A. Ramesh, Siddhartha Sankar Ghosh, Arun Chattopadhyay, Langmuir (2006) 9322-9328.

Google Scholar

[13] Liang Lei, Xiao Liu, Yongqi Yin, Ye Sun, Miao Yu, Jian Shang, Material Letters 130 (2014) 79-82.

Google Scholar

[14] Ivan Sondi, Branka Salopek-Sondi, Journal of Colloid and Interface Science 275 (2004) 177-182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[15] Ponnusamy Manogaran Gopinath, Ganesan Narchonai, Dharumadurai Dhanasekaran, Anandan Ranjani, Nooruddin Thajuddin, Mycosynthesis, Asian journal of pharmaceutical sciences XXX (2014) 1-8.

DOI: 10.1016/j.ajps.2014.08.007

Google Scholar