[1]
J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (2002) 129-281.
Google Scholar
[2]
L.F. Bonetti, G. Capote, L.V. Santos, E.J. Corat, V.J. Trava-Airoldi, Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer, Thin Solid Films 515 (2006) 375-379.
DOI: 10.1016/j.tsf.2005.12.154
Google Scholar
[3]
R. Hauert, A review of modified DLC coatings for biological applications, Diamond Relat. Mater. 12 (2003) 583-589.
DOI: 10.1016/s0925-9635(03)00081-5
Google Scholar
[4]
S. Zhang, H. Du, S. -E. Ong, K. -N. Aung, H. -C. Too, X. Miao, Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon, Thin Solid Films 515 (2006) 66-72.
DOI: 10.1016/j.tsf.2005.12.037
Google Scholar
[5]
A. Rich, A.K. Harris, Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata, J. Cell Sci. 50 (1981) 1-7.
DOI: 10.1242/jcs.50.1.1
Google Scholar
[6]
J.A. McLaughlin, B. Meenan, P. Maguire, N. Jamieson, Properties of diamond like carbon thin film coatings on stainless steel medical guidewires, Diamond Relat. Mater. 5 (1996) 486-491.
DOI: 10.1016/0925-9635(96)80065-3
Google Scholar
[7]
T. Yokota, T. Terai, T. Kobayashi, T. Meguro, M. Iwaki, Cell adhesion to nitrogen-doped DLCs fabricated by plasma-based ion implantation and deposition method using toluene gas, Surf. Coat. Technol. 201 (2007) 8048-8051.
DOI: 10.1016/j.surfcoat.2006.03.051
Google Scholar
[8]
Q. Zhao, Y. Liu, C. Wang, S. Wang, Bacterial adhesion on silicon-doped diamond-like carbon films, Diamond Relat. Mater. 16 (2007) 1682-1687.
DOI: 10.1016/j.diamond.2007.03.002
Google Scholar
[9]
T.I.T. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A.D. McLaughlin, Platelet adhesion on silicon modified hydrogenated amorphous carbon films, Biomaterials 25 (2004) 239-245.
DOI: 10.1016/s0142-9612(03)00494-0
Google Scholar
[10]
S. -W. Ha, R. Hauert, K. -H. Ernst, E. Wintermantel, Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications, Surf. Coat. Technol. 96 (1997) 293-299.
DOI: 10.1016/s0257-8972(97)00179-5
Google Scholar
[11]
R.K. Roy, H. -W. Choi, S. -J. Park, K. -R. Lee, Surface energy of the plasma treated Si incorporated diamond-like carbon films, Diamond Relat. Mater. 16 (2007) 1732-1738.
DOI: 10.1016/j.diamond.2007.06.002
Google Scholar
[12]
I. Junkar, U. Cvelbar, A. Vesel, N. Hauptman, M. Mozetic, The role of crystallinity on polymer interaction with oxygen plasma, Plasma Process Polym. 6 (2009) 667-675.
DOI: 10.1002/ppap.200900034
Google Scholar
[13]
I. Junkar, A. Vesel, U. Cvelbar, M. Mozetic, S. Strnad, Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymer, Vacuum 84 (2010) 83-85.
DOI: 10.1016/j.vacuum.2009.04.011
Google Scholar
[14]
J.P. Fernandez-Blazquez, D. Fell, E. Bonaccurso, A. d. Campo, Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment, J. Colloid Interface Sci. 357 (2011) 234-238.
DOI: 10.1016/j.jcis.2011.01.082
Google Scholar
[15]
J.D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers, Plenum, New York, (1985).
Google Scholar
[16]
C. Jongwannasiri, N. Moolsradoo, A. Khantachawana, P. Kaewtatip, S. Watanabe, The comparison of biocompatibility properties between Ti alloys and fluorinated diamond-like carbon films, Advances in Materials Science and Engineering 2012, Article ID 724126 (2012).
DOI: 10.1155/2012/724126
Google Scholar
[17]
Y. Kitazaki, T. Hata, Surface-chemical criteria for optimum adhesion, J. Adhes. 4 (1972) 123-132.
Google Scholar
[18]
T. Hata, Y. Kitazaki, T. Saito, Estimation of the surface energy of polymer solids, J. Adhes. 21 (1987) 177-194.
Google Scholar
[19]
J. Coates, Interpretation of Infrared Spectra, in: R.A. Meyers (Ed. ), John Wiley & Sons Ltd, Chichester, 2000, pp.10815-10837.
Google Scholar
[20]
S. Guruvenket, G.M. Rao, M. Komath, A.M. Raichur, Plasma surface modification of polystyrene and polyethylene, Appl. Surf. Sci. 236 (2004) 278-284.
DOI: 10.1016/j.apsusc.2004.04.033
Google Scholar
[21]
T. Heitz, B. Drévillon, C. Godet, J.E. Bourée, Quantitative study of C—H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry, Phys. Rev. B 58 (1998) 13957-13973.
DOI: 10.1103/physrevb.58.13957
Google Scholar
[22]
N. Dwivedi, S. Kumar, H.K. Malik, Role of ex-situ oxygen plasma treatments on the mechanical and optical properties of diamond-like carbon thin films, Mater. Chem. Phys. 134 (2012) 7-12.
DOI: 10.1016/j.matchemphys.2012.02.050
Google Scholar
[23]
H. Yokomichi, A. Masuda, Effect of sputtering with hydrogen dilution on fluorine concentration of low hydrogen content fluorinated amorphous carbon thin films with low dielectric constant, J. Appl. Phys. 86 (1999) 2468-2472.
DOI: 10.1063/1.371078
Google Scholar
[24]
L.G. Jacobsohn, D.F. Franceschini, M.M. d. Costa, F.L. Freire(Jr. ), Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF4-CH4 gas mixtures, J. Vac. Sci. Technol. A 18 (2000).
DOI: 10.1116/1.1289540
Google Scholar
[25]
X. Wang, H.R. Harris, K. Bouldin, H. Temkin, S. Gangopadhayay, M.D. Strathman, M. West, Structural properties of fluorinated amorphous carbon films, J. Appl. Phys. 87 (2000) 621-623.
DOI: 10.1063/1.371910
Google Scholar
[26]
F.R. Marciano, L.F. Bonetti, N.S. Da-Silva, E.J. Corat, V.J. Trava-Airoldi, Wettability and antibacterial activity of modified diamond-like carbon, Appl. Surf. Sci. 255 (2009) 8377-8382.
DOI: 10.1016/j.apsusc.2009.05.091
Google Scholar
[27]
J. Yang, K. Teii, Wettability of plasma-treated nanocrystalline diamond films, Diamond Relat. Mater. 24 (2012) 54-58.
DOI: 10.1016/j.diamond.2011.10.023
Google Scholar
[28]
K. Matsubara, M. Danno, M. Inoue, H. Nishizawa, Y. Honda, T. Abe, Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system, Appl. Surf. Sci. 284 (2013) 340-347.
DOI: 10.1016/j.apsusc.2013.07.103
Google Scholar
[29]
R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham, Production and wetting properties of fluorinated diamond-like carbon coatings, Thin Solid Films 311 (1997) 107-113.
DOI: 10.1016/s0040-6090(97)00337-4
Google Scholar
[30]
F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A. Gigler, R.W. Stark, Stability of the hydrophilic behavior of oxygen plasma activated SU-8, J. Micromech. Microeng. 17 (2007) 524-531.
DOI: 10.1088/0960-1317/17/3/015
Google Scholar
[31]
N.M.S. Marins, R.P. Mota, R.Y. Honda, P.A.P. Nascente, M.E. Kayama, K.G. Kostov, M.A. Algatti, N.C. Cruz, E.C. Rangel, Properties of hydrogenated amorphous carbon films deposited by PECVD and modified by SF6 plasma, Surf. Coat. Technol. 206 (2011).
DOI: 10.1016/j.surfcoat.2011.06.058
Google Scholar
[32]
A.L. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem. 17 (1961) 215-221.
Google Scholar
[33]
S. Nagashima, T. Hasebe, A. Kamijo, Y. Yoshimoto, A. Hotta, H. Morita, H. Terada, M. Tanaka, K. Takahashi, T. Suzuki, Effect of oxygen plasma treatment on non-thrombogenicity of diamond-like carbon films, Diamond Relat. Mater. 19 (2010) 861-865.
DOI: 10.1016/j.diamond.2010.02.003
Google Scholar
[34]
T. Shao, C. Zhang, K. Long, D. Zhang, J. Wang, P. Yan, Y. Zhou, Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air, Appl. Surf. Sci. 256 (2010) 3888-3894.
DOI: 10.1016/j.apsusc.2010.01.045
Google Scholar
[35]
C. Zhang, T. Shao, K. Long, Y. Yu, J. Wang, D. Zhang, P. Yan, Y. Zhou, Surface treatment of polyethylene terephthalate films using DBD excited by repetitive unipolar nanosecond pulses in air at atmospheric pressure, IEEE Trans. Plasma Sci. 38 (2010).
DOI: 10.1109/tps.2010.2045660
Google Scholar
[36]
T. Jacobs, N.D. Geyter, R. Morent, S.V. Vlierberghe, P. Dubruel, C. Leys, Plasma modification of PET foils with different crystallinity, Surf. Coat. Technol. 205 (2011) S511-S515.
DOI: 10.1016/j.surfcoat.2011.01.029
Google Scholar
[37]
Z. Fang, J. Yang, Y. Liu, T. Shao, C. Zhang, Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 41 (2013) 1627-1634.
DOI: 10.1109/tps.2013.2259508
Google Scholar