Improvement of Hydrophilic Stability of Diamond-Like Carbon Films by O2/CF4 Plasma Post-Treatment

Article Preview

Abstract:

In this article, the results obtained from a study carried out on the plasma post-treatment of diamond-like carbon (DLC) films using an oxygen/tetrafluoromethane (O2/CF4) gas mixture is reported. The surface morphology and chemical bonding of the films before and after the plasma post-treatment were characterized using atomic force microscopy (AFM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The effect of adding CF4 to the O2 plasma on the wettability of the films was also examined using contact angle measurements. The results indicate that the surface roughness increased with the addition of CF4 to the O2 plasma, whereas oxygen-and fluorinated-based functional groups were generated on the surface of the DLC films submitted to O2/CF4 plasma post-treatment. The surface energy also decreased with increasing CF4 fraction, causing the surface of the films to be hydrophobic. Furthermore, the films containing 20% CF4 exhibited higher hydrophilic stability than the others. Thus, the addition of a small amount of CF4 to O2 plasma can be considered beneficial in improving the hydrophilic stability of surface of DLC films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-44

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (2002) 129-281.

Google Scholar

[2] L.F. Bonetti, G. Capote, L.V. Santos, E.J. Corat, V.J. Trava-Airoldi, Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer, Thin Solid Films 515 (2006) 375-379.

DOI: 10.1016/j.tsf.2005.12.154

Google Scholar

[3] R. Hauert, A review of modified DLC coatings for biological applications, Diamond Relat. Mater. 12 (2003) 583-589.

DOI: 10.1016/s0925-9635(03)00081-5

Google Scholar

[4] S. Zhang, H. Du, S. -E. Ong, K. -N. Aung, H. -C. Too, X. Miao, Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon, Thin Solid Films 515 (2006) 66-72.

DOI: 10.1016/j.tsf.2005.12.037

Google Scholar

[5] A. Rich, A.K. Harris, Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata, J. Cell Sci. 50 (1981) 1-7.

DOI: 10.1242/jcs.50.1.1

Google Scholar

[6] J.A. McLaughlin, B. Meenan, P. Maguire, N. Jamieson, Properties of diamond like carbon thin film coatings on stainless steel medical guidewires, Diamond Relat. Mater. 5 (1996) 486-491.

DOI: 10.1016/0925-9635(96)80065-3

Google Scholar

[7] T. Yokota, T. Terai, T. Kobayashi, T. Meguro, M. Iwaki, Cell adhesion to nitrogen-doped DLCs fabricated by plasma-based ion implantation and deposition method using toluene gas, Surf. Coat. Technol. 201 (2007) 8048-8051.

DOI: 10.1016/j.surfcoat.2006.03.051

Google Scholar

[8] Q. Zhao, Y. Liu, C. Wang, S. Wang, Bacterial adhesion on silicon-doped diamond-like carbon films, Diamond Relat. Mater. 16 (2007) 1682-1687.

DOI: 10.1016/j.diamond.2007.03.002

Google Scholar

[9] T.I.T. Okpalugo, A.A. Ogwu, P.D. Maguire, J.A.D. McLaughlin, Platelet adhesion on silicon modified hydrogenated amorphous carbon films, Biomaterials 25 (2004) 239-245.

DOI: 10.1016/s0142-9612(03)00494-0

Google Scholar

[10] S. -W. Ha, R. Hauert, K. -H. Ernst, E. Wintermantel, Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications, Surf. Coat. Technol. 96 (1997) 293-299.

DOI: 10.1016/s0257-8972(97)00179-5

Google Scholar

[11] R.K. Roy, H. -W. Choi, S. -J. Park, K. -R. Lee, Surface energy of the plasma treated Si incorporated diamond-like carbon films, Diamond Relat. Mater. 16 (2007) 1732-1738.

DOI: 10.1016/j.diamond.2007.06.002

Google Scholar

[12] I. Junkar, U. Cvelbar, A. Vesel, N. Hauptman, M. Mozetic, The role of crystallinity on polymer interaction with oxygen plasma, Plasma Process Polym. 6 (2009) 667-675.

DOI: 10.1002/ppap.200900034

Google Scholar

[13] I. Junkar, A. Vesel, U. Cvelbar, M. Mozetic, S. Strnad, Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymer, Vacuum 84 (2010) 83-85.

DOI: 10.1016/j.vacuum.2009.04.011

Google Scholar

[14] J.P. Fernandez-Blazquez, D. Fell, E. Bonaccurso, A. d. Campo, Superhydrophilic and superhydrophobic nanostructured surfaces via plasma treatment, J. Colloid Interface Sci. 357 (2011) 234-238.

DOI: 10.1016/j.jcis.2011.01.082

Google Scholar

[15] J.D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers, Plenum, New York, (1985).

Google Scholar

[16] C. Jongwannasiri, N. Moolsradoo, A. Khantachawana, P. Kaewtatip, S. Watanabe, The comparison of biocompatibility properties between Ti alloys and fluorinated diamond-like carbon films, Advances in Materials Science and Engineering 2012, Article ID 724126 (2012).

DOI: 10.1155/2012/724126

Google Scholar

[17] Y. Kitazaki, T. Hata, Surface-chemical criteria for optimum adhesion, J. Adhes. 4 (1972) 123-132.

Google Scholar

[18] T. Hata, Y. Kitazaki, T. Saito, Estimation of the surface energy of polymer solids, J. Adhes. 21 (1987) 177-194.

Google Scholar

[19] J. Coates, Interpretation of Infrared Spectra, in: R.A. Meyers (Ed. ), John Wiley & Sons Ltd, Chichester, 2000, pp.10815-10837.

Google Scholar

[20] S. Guruvenket, G.M. Rao, M. Komath, A.M. Raichur, Plasma surface modification of polystyrene and polyethylene, Appl. Surf. Sci. 236 (2004) 278-284.

DOI: 10.1016/j.apsusc.2004.04.033

Google Scholar

[21] T. Heitz, B. Drévillon, C. Godet, J.E. Bourée, Quantitative study of C—H bonding in polymerlike amorphous carbon films using in situ infrared ellipsometry, Phys. Rev. B 58 (1998) 13957-13973.

DOI: 10.1103/physrevb.58.13957

Google Scholar

[22] N. Dwivedi, S. Kumar, H.K. Malik, Role of ex-situ oxygen plasma treatments on the mechanical and optical properties of diamond-like carbon thin films, Mater. Chem. Phys. 134 (2012) 7-12.

DOI: 10.1016/j.matchemphys.2012.02.050

Google Scholar

[23] H. Yokomichi, A. Masuda, Effect of sputtering with hydrogen dilution on fluorine concentration of low hydrogen content fluorinated amorphous carbon thin films with low dielectric constant, J. Appl. Phys. 86 (1999) 2468-2472.

DOI: 10.1063/1.371078

Google Scholar

[24] L.G. Jacobsohn, D.F. Franceschini, M.M. d. Costa, F.L. Freire(Jr. ), Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF4-CH4 gas mixtures, J. Vac. Sci. Technol. A 18 (2000).

DOI: 10.1116/1.1289540

Google Scholar

[25] X. Wang, H.R. Harris, K. Bouldin, H. Temkin, S. Gangopadhayay, M.D. Strathman, M. West, Structural properties of fluorinated amorphous carbon films, J. Appl. Phys. 87 (2000) 621-623.

DOI: 10.1063/1.371910

Google Scholar

[26] F.R. Marciano, L.F. Bonetti, N.S. Da-Silva, E.J. Corat, V.J. Trava-Airoldi, Wettability and antibacterial activity of modified diamond-like carbon, Appl. Surf. Sci. 255 (2009) 8377-8382.

DOI: 10.1016/j.apsusc.2009.05.091

Google Scholar

[27] J. Yang, K. Teii, Wettability of plasma-treated nanocrystalline diamond films, Diamond Relat. Mater. 24 (2012) 54-58.

DOI: 10.1016/j.diamond.2011.10.023

Google Scholar

[28] K. Matsubara, M. Danno, M. Inoue, H. Nishizawa, Y. Honda, T. Abe, Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system, Appl. Surf. Sci. 284 (2013) 340-347.

DOI: 10.1016/j.apsusc.2013.07.103

Google Scholar

[29] R.S. Butter, D.R. Waterman, A.H. Lettington, R.T. Ramos, E.J. Fordham, Production and wetting properties of fluorinated diamond-like carbon coatings, Thin Solid Films 311 (1997) 107-113.

DOI: 10.1016/s0040-6090(97)00337-4

Google Scholar

[30] F. Walther, P. Davydovskaya, S. Zürcher, M. Kaiser, H. Herberg, A. Gigler, R.W. Stark, Stability of the hydrophilic behavior of oxygen plasma activated SU-8, J. Micromech. Microeng. 17 (2007) 524-531.

DOI: 10.1088/0960-1317/17/3/015

Google Scholar

[31] N.M.S. Marins, R.P. Mota, R.Y. Honda, P.A.P. Nascente, M.E. Kayama, K.G. Kostov, M.A. Algatti, N.C. Cruz, E.C. Rangel, Properties of hydrogenated amorphous carbon films deposited by PECVD and modified by SF6 plasma, Surf. Coat. Technol. 206 (2011).

DOI: 10.1016/j.surfcoat.2011.06.058

Google Scholar

[32] A.L. Allred, Electronegativity values from thermochemical data, J. Inorg. Nucl. Chem. 17 (1961) 215-221.

Google Scholar

[33] S. Nagashima, T. Hasebe, A. Kamijo, Y. Yoshimoto, A. Hotta, H. Morita, H. Terada, M. Tanaka, K. Takahashi, T. Suzuki, Effect of oxygen plasma treatment on non-thrombogenicity of diamond-like carbon films, Diamond Relat. Mater. 19 (2010) 861-865.

DOI: 10.1016/j.diamond.2010.02.003

Google Scholar

[34] T. Shao, C. Zhang, K. Long, D. Zhang, J. Wang, P. Yan, Y. Zhou, Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air, Appl. Surf. Sci. 256 (2010) 3888-3894.

DOI: 10.1016/j.apsusc.2010.01.045

Google Scholar

[35] C. Zhang, T. Shao, K. Long, Y. Yu, J. Wang, D. Zhang, P. Yan, Y. Zhou, Surface treatment of polyethylene terephthalate films using DBD excited by repetitive unipolar nanosecond pulses in air at atmospheric pressure, IEEE Trans. Plasma Sci. 38 (2010).

DOI: 10.1109/tps.2010.2045660

Google Scholar

[36] T. Jacobs, N.D. Geyter, R. Morent, S.V. Vlierberghe, P. Dubruel, C. Leys, Plasma modification of PET foils with different crystallinity, Surf. Coat. Technol. 205 (2011) S511-S515.

DOI: 10.1016/j.surfcoat.2011.01.029

Google Scholar

[37] Z. Fang, J. Yang, Y. Liu, T. Shao, C. Zhang, Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 41 (2013) 1627-1634.

DOI: 10.1109/tps.2013.2259508

Google Scholar