[1]
T. Vanorio, M. Prasad, A. Nur, Elastic properties of dry clay mineral aggregates, suspensions and sandstones, Geophysical Journal International, 155 (2003) 319-326.
DOI: 10.1046/j.1365-246x.2003.02046.x
Google Scholar
[2]
M.B. Clennell, D.N. Dewhurst, K.M. Brown, G.K. Westbrook, Permeability of consolidated clays, Geological Society, Special Publications, 158 (1999) 79-96.
DOI: 10.1144/gsl.sp.1999.158.01.07
Google Scholar
[3]
J. Barrios Neira, J.C. Martín de la Cruz, Y.M. Montealegre Contreras, Study of the raw materials used in the manufacture of ceramic in Fran Ali (Oued Lau. Marruecos), Boletin de la Societad Espanola de Ceramica y Vidrio, 51 (2012) 222-230.
DOI: 10.3989/cyv.322012
Google Scholar
[4]
V. Trnovcová, I. Furár, F. Hanic, Influence of technological texture on electrical properties of industrial ceramics, Physics and Chemistry of Solids, 68 (2007) 1135-1139.
DOI: 10.1016/j.jpcs.2007.03.004
Google Scholar
[5]
I. Štubňa, Š. Valovič, Thermal expansion of textured electroceramics, Industrial Ceramics, 24 (2004) 121-124.
Google Scholar
[6]
I. Štubňa, V. Trnovcová, The effect of texture on thermal expansion of extruded ceramics, Ceramics – Silikáty, 42 (1998) 21-24.
Google Scholar
[7]
I. Štubňa, A. Lintnerová, L. Vozár, Anisotropic mechanical properties of textured quartz porcelain, Ceramics – Silíkáty, 52 (2008) 90-94.
Google Scholar
[8]
A.N. Beljanin, V.N. Rudakov, Radiodefectoscopy of the ordered inhomogeneous dielectrics, Izvestia Vuzov – Defektoskopia, 4 (1968) 1-4 (in Russian).
Google Scholar
[9]
I. Štubňa, M. Kalužná, V. Trnovcová, Mapping the texture of electroporcelain blank by radiointroscopy, Industrial Ceramics, 30 (2010) 17-20.
Google Scholar
[10]
K. Boussois, S. Deniel, N. Tessier-Doyen, D. Chateigner, C. Dublanche-Tixier, P. Blanchart, Characterization of textured ceramics containing mullite from phyllosilicates, Ceramics International, 39 (2013) 5327-5333.
DOI: 10.1016/j.ceramint.2012.12.038
Google Scholar
[11]
R. Podoba, Ľ. Podobník, A. Trník, Upgrading of TGA/DTA analyzer derivatograph, Épitőanyag 64 (2012) 28-29.
DOI: 10.14382/epitoanyag-jsbcm.2012.5
Google Scholar
[12]
T. Húlan, A. Trník, I. Štubňa, The apparatus form measurement of Young modulus of ceramics at elevated temperatures, Vestnik MGOU, seria fizika – matematika (2014) 21-29.
Google Scholar
[13]
H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, O. Hahn, Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model, International Journal of Thermophysics, 19(3) (1998).
DOI: 10.1023/a:1022611527321
Google Scholar
[14]
T. Húlan, I. Štubňa, A. Trník, P. Bačík, T. Kaljuvee, L. Vozár, Thermomechanical analysis of illite from Fuzérradvány, Materials Science (Medžiagotyra), accepted manuscript.
DOI: 10.5755/j01.ms.21.3.7152
Google Scholar
[15]
V.A. Drits, D. McCarty, The nature of structure-bonded H2O in illite and leucophyllite from dehydratation and dehydroxylation experiments, Clay and Clay Minerals, 55 (2007) 45-58.
DOI: 10.1346/ccmn.2007.0550104
Google Scholar
[16]
C. Venturelli, M. Paganelli, Sintering behaviour of clays for the production of ceramics, Ceramic Forum International Ber. DKG, 84 (2007) E1-E3.
Google Scholar