[1]
M.G. Baldi and L. Leoncini, Thermal exergy analysis of a building, Energy Procedia 62 (2014) 723-732.
DOI: 10.1016/j.egypro.2014.12.436
Google Scholar
[2]
I. Baldvinson and T. Nakata, A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method, Energy 74 (2014) 537-554.
DOI: 10.1016/j.energy.2014.07.019
Google Scholar
[3]
A. Bejan, Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture, International Journal of Energy Research 26 (2002) 545-565.
DOI: 10.1002/er.804
Google Scholar
[4]
A. Bermúdez de Castro, Continuum Thermomechanics, Birkhäuser, Basel, (2005).
Google Scholar
[5]
M.A. Biot, Variational irreversible thermodynamics of heat and mass transfer in porous solids: new concepts and methods, Quarterly of Applied Mathematics 36 (1978) 19-38.
DOI: 10.1090/qam/475341
Google Scholar
[6]
E.C. Boelman and H. Asada, Exergy and sustainable building, Open House International 28 (2003) 60-67.
Google Scholar
[7]
S. Carluci and L. Pagliano, A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings, Energy and Buildings 53 (2012) 194-205.
DOI: 10.1016/j.enbuild.2012.06.015
Google Scholar
[8]
G.Q. Chen, Exergy consumption of the earth, Ecological Modelling 184 (2005) 363-380.
Google Scholar
[9]
D.B. Crawley, Contrasting the capabilities of building energy performance simulation programs, Building and Environment 43 (2008) 661-673.
DOI: 10.1016/j.buildenv.2006.10.027
Google Scholar
[10]
M. Faruqi and P. Ghavami, Simulation analysis of passive solar structures using heat transfer equations, ARPN Journal of Engineering and Applied Sciences 5 (2010) 41-45.
Google Scholar
[11]
W. Feist, Gestaltungsgrundlagen Passivähuser, Das Beispiel, Darmstadt, 1999 (in German).
Google Scholar
[12]
P. Jarošová and S. Šťastník, Numerical prediction of energy consumption in buildings with controlled interior temperature, in: ICNAAM – International Conference on Numerical Analysis and Applied Mathematics in Rhodes (Greece), AIP Conference Proceedings 1648, American Institute of Physics, Melville, 2014, p.090014.
DOI: 10.1063/1.4912402
Google Scholar
[13]
J.H. Lienhard IV and J.H. Lienhard V, A Heat Transfer Textbook, Phlogiston Press, Cambridge, Massachustes, (2002).
Google Scholar
[14]
S.P. Lohani and D. Schmidt, Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system, Renewable Energy 35 (2010) 1275-1282.
DOI: 10.1016/j.renene.2009.10.002
Google Scholar
[15]
C.E.K. Mady, M.S. Ferreira, J.I. Yanagihara and S. de Oliveira Jr., Human body exergy analysis and the assessment of thermal comfort conditions, International Journal of Heat and Mass Transfer 77 (2014) 577-584.
DOI: 10.1016/j.ijheatmasstransfer.2014.05.039
Google Scholar
[16]
V. Martinatis, D. Bieska and V. Misceviciute, Degree-days for the exergy analysis of buildings, Energy 74 (2014) 537-554.
Google Scholar
[17]
P.V. Nielsen, Fifty years of CFD for room air distribution, Building and Environment 90 (2015), in press, 27 pp., doi: 910. 1016/j. buildenv. 2015. 02. 035.
DOI: 10.1016/j.buildenv.2015.02.035
Google Scholar
[18]
F. Otto, Einfluss der vom menschlichen Körper absorbierten Solarstrahlung für das Wärme-empfinden in Gebäuden, Bauphysik 31 (2009) 25-37 (in German).
DOI: 10.1002/bapi.200910005
Google Scholar
[19]
F. Pesavento, D. Gawin and B.A. Schrefler, Modeling cementitious materials as multiphase porous media, Acta Mechanica 201 (2008) 313-339.
DOI: 10.1007/s00707-008-0065-z
Google Scholar
[20]
M. Prek, Thermodynamical analysis of human thermal comfort, Energy 31 (2006) 732-743.
DOI: 10.1016/j.energy.2005.05.001
Google Scholar
[21]
M.A. Rosen and I. Dincer, Exergy as the confluence of energy, environment and sustainable development, Exergy International Journal 1 (2001) 3-13.
DOI: 10.1016/s1164-0235(01)00004-8
Google Scholar
[22]
M.A. Rosen and I. Dincer, Exergy–cost–energy–mass analysis of thermal systems and processes, Energy Conversion and Management 44 (2003) 1633-1651.
DOI: 10.1016/s0196-8904(02)00179-6
Google Scholar
[23]
P. Sakulpipatsin, L.C.M. Itard, H.J. van der Kooi, E.C. Boelman and P.G. Luscuere, An exergy application for analysis of buildings and HVAC systems, Energy and Buildings 42 (2010) 90-99.
DOI: 10.1016/j.enbuild.2009.07.015
Google Scholar
[24]
A. Schlueter and F. Thesseling, Building information model based energy/exergy performance assessment in early design stages, Automation in Construction 18 (2009) 153-163.
DOI: 10.1016/j.autcon.2008.07.003
Google Scholar
[25]
B.A. Schrefler, D.P. Boso, F. Pesavento, D. Gawin and M. Lefik, Mathematical and numerical multi-scale modelling of multiphysics problems, Computer Assisted Mechanics and Engineering Sciences 18 (2011) 91-113.
Google Scholar
[26]
E. Sciubba and G. Wall, A brief commented history of exergy from the beginnings to 2004, International Journal of Thermodynamics 10 (2007) 1-26.
Google Scholar
[27]
A. Shahma, V.V. Tyagi, C.R. Chen and D. Buddhi: Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews 13 (2009) 318-345.
DOI: 10.1016/j.rser.2007.10.005
Google Scholar
[28]
S. Šťastník and J. Vala, On the thermal stability in dwelling structures, Building Research Journal 52 (2004) 31-55.
Google Scholar
[29]
J. Vala, Multiphase modelling of thermomechanical behaviour of early-age silicate composites, in: Mohamed El-Amin (Ed. ), Mass Transfer in Multiphase Systems and its Applications, InTech, Rijeka, 2011, pp.49-66.
DOI: 10.5772/14928
Google Scholar
[30]
Z. Wierciński and A. Skotnicka-Siepsak, Energy and exergy flow balances for traditional and passive detached houses, Technical Sciences 15 (2012) 15-33.
Google Scholar
[31]
Directive 2010/31/EU of the European Parliament and of the Council on the energy performance of buildings, Official Journal of the European Union L153/13 (2010).
Google Scholar
[32]
US Department of Energy, Building Energy Software Tools Directory, information on http: /apps1. eere. energy. gov/buildings/tools_directory (2015).
Google Scholar