Functionalized Antimicrobial Thin Films Based on Antibiotic Imbedded in Polymer Matrix for Implants Coating

Article Preview

Abstract:

In this study we investigated the possibility to use in implantology of a new composite made from antibiotic imbedded in polymer matrix with goal to merge the mechanical advantages of the metallic substrate with the excellent corrosion protection of the polymer and antimicrobial effect of the antibiotics. Furthermore the addition of small quantity of bioactive glass allows the antibiotic release and hastens the osteointegration. The biological properties of the coatings were tested including the microbial viability using Gram - and Gram + bacterial strains with known antibiotic susceptibility behavior. The proposed system could be used for development of new antimicrobial materials or strategies for fighting medical biofilm pathogens often implicated in the occurrence of chronic infections.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-148

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.K. Chu, X. Liu, editors. Biomaterials Fabrication and Processing Handbook. CRC Press, Taylor & Francis Group, Boca Raton, (2008).

Google Scholar

[2] F. Barrere, T.A. Mahmood, K. de Groot, C.A. van Blitterswijk, Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions, Mat Sci Eng R. 59 (2008) 38-71.

DOI: 10.1016/j.mser.2007.12.001

Google Scholar

[3] K. Duan, R. Wang, Surface modifications of bone implants through wet chemistry, J Mater Chem. 16 (2006) 2309-2321.

DOI: 10.1039/b517634d

Google Scholar

[4] M. Zilberman, J.J. Elsner, Antibiotic-eluting medical devices for various applications, J Control Release. 130 (2008) 202-215.

DOI: 10.1016/j.jconrel.2008.05.020

Google Scholar

[5] T. -F.C. Mah, G.A. O'Toole, Mechanisms of biofilm resistance to antimicrobial agents, Trends Microbiol. 9(1) (2001) 34-39.

Google Scholar

[6] S. Radin, J.T. Campbell, P. Ducheyne, J.M. Cuckler, Calcium phosphate ceramic coatings as carriers of vancomycin, Biomaterials. 18 (1997) 777-782.

DOI: 10.1016/s0142-9612(96)00190-1

Google Scholar

[7] V. Luginbuehl, L. Meinel, H.P. Merkle, B. Gander, Localized delivery of growth factors for bone repair, Eur J Pharm Biopharm. 58 (2004) 197-208.

DOI: 10.1016/j.ejpb.2004.03.004

Google Scholar

[8] R. Cristescu, C. Popescu, A. C. Popescu, Popescu, G. Socol, I.N. Mihailescu, G. Caraene, R. Albulescu, T. Buruiana, D. Chrisey, Pulsed laser processing of functionalized polysaccharides for controlled release drug delivery systems: functionalized polysaccharides processed for drug delivery, NATO Science for Peace and Security Series A: Chemistry and Biology (2012).

DOI: 10.1007/978-94-007-2488-4_25

Google Scholar

[9] A.J. Tasman, F. Wallner, R. Neumeier, Antibiotic impregnation of cartilage implants: diffusion kinetics of fluoroquinolones, Laryngo-Rhino-otologie 79 (2000) 30-33.

DOI: 10.1055/s-2000-8778

Google Scholar

[10] C. Saviuc, A.M. Grumezescu, A. Holban, C. Chifiriuc, D. Mihaiescu, V. Lazar, Biointerface Res. Appl. Chem. 1 (2011) 64–71.

Google Scholar

[11] C. Saviuc, A.M. Grumezescu, E. Oprea, V. Radulescu, L. Dascalu, M.C. Chifiriuc, M. Bucur, O. Banu, V. Lazar, Biointerface Res. Appl. Chem. 1 (2011) 15–23.

Google Scholar

[12] E. Panus, C.M. Chifiriuc, O. Banu, M. Mitache, C. Bleotu, N. Rosoiu, V. Lazar, Biointerface Res. Appl. Chem. 1 (2011) 24–30.

Google Scholar