Mechanical Properties of Polypropylene/Carbon Nanotube Composites by Indentation Technique

Article Preview

Abstract:

The Instrumented Indentation Technique (IIT) is used to measure the local mechanical properties of different materials. The mechanical parameters (indentation hardness and modulus) of multi-walled carbon nanotubes filled polypropylene (PP/MWCNTs) nanocomposites derived from the load-displacement indentation curve are investigated by sharp indentation. The effect of the visco-elastic-plastic deformations on the mechanical properties is studied considering a 5-step indentation test. The mechanical properties calculated based on the traditional Oliver and Pharr method are compared with those extracted from the new indentation methodology. During the 5-step indentation test, the viscoelastic deformations during the reloading-holding phases are reduced due to the decrease in the indentation displacement with the increase in the concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.D. Bao, Z.X. Guo, J. Yu, Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites. Polymer 49(17) (2008) 3826-3831.

DOI: 10.1016/j.polymer.2008.06.024

Google Scholar

[2] W.X. Zhang, T.J. Wang, X. Chen, Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int. J. Plasticity 26 (2010) 957-975.

DOI: 10.1016/j.ijplas.2009.12.002

Google Scholar

[3] S. Sathyanarayana, C. Hübner, Thermoplastic Nanocomposites with Carbon Nanotubes, J. Njuguna (ed. ), Structural Nanocomposites, Engineering Materials, Springer-Verlag Berlin Heidelberg, (2013).

DOI: 10.1007/978-3-642-40322-4_2

Google Scholar

[4] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res. 1(4) (1986) 601–609.

DOI: 10.1557/jmr.1986.0601

Google Scholar

[5] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6) (1992) 1564–1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[6] G.M. Pharr, W.C. Oliver, Measurement of thin film mechanical properties using nanoindentation, MRS Bull. 17 (1992) 28-33.

DOI: 10.1557/s0883769400041634

Google Scholar

[7] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Mater. Sci. Eng. A, 253 (1998) 151-159.

DOI: 10.1016/s0921-5093(98)00724-2

Google Scholar

[8] A.C. Fischer-Cripps, Nanoindentation, 2nd ed., Springer, New York, (2004).

Google Scholar

[9] J.L. Loubet, B.N. Lucas, W.C. Oliver, Some measurements of viscoelastic properties with the help of nanoindentation, NIST Special Publication 896: International Workshop on Instrumented Indentation, 1995, 31-34.

Google Scholar

[10] B.N. Lucas, C.T. Rosenmayer, W.C. Oliver, Mechanical characterization of sub-micron polytetrafluoroethylene (PTFE) thin films, in Thin films-stresses and mechanical properties VII, Mater. Res. Soc. Symp. P. 505 (1998) 97-102.

DOI: 10.1557/proc-505-97

Google Scholar

[11] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation J. Mater. Res. 19(1) (2004) 3-20.

DOI: 10.1557/jmr.2004.19.1.3

Google Scholar

[12] G.M. Pharr, A. Bolshakov, Understanding Nanoindentation Unloading Curves, J. Mater. Res. 17 (2002) 2660–2671.

DOI: 10.1557/jmr.2002.0386

Google Scholar

[13] F. Stan, C. Fetecau, Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation, Mech. Time-Depend. Mater. 17 (2013) 205-221.

DOI: 10.1007/s11043-012-9198-5

Google Scholar

[14] M.L. Oyen, R.F. Cook, Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials, J. Mater. Res. 18 (2003) 139–150.

DOI: 10.1557/jmr.2003.0020

Google Scholar

[15] A.E. Giannakopoulos, P.L. Larson, E. Soderlund, D.J. Rowcliffe, R. Vestergaard, Analysis of Vickers indentation, Int. J. Solids Struct. 31(19) (1994) 2679.

Google Scholar

[16] ** CSM Instruments: Investigation of creep behavior using Micro or Nano Indentation Tester (MHT/NHT), Applications Bulletin 22 (2006) 44-56.

Google Scholar

[17] I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57.

DOI: 10.1016/0020-7225(65)90019-4

Google Scholar

[18] R.B. King, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23(12) (1987) 1657-1664.

DOI: 10.1016/0020-7683(87)90116-8

Google Scholar

[19] F. Stan, L.I. Sandu, C. Fetecau, Effect of processing parameters and strain rate on mechanical properties of carbon nanotube–filled polypropylene nanocomposites, Composites: Part B 59 (2014) 109–122.

DOI: 10.1016/j.compositesb.2013.11.023

Google Scholar

[20] T. Chudoba, F. Richter, Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results, Surf. Coat. Technol. 148 (2001) 191–198.

DOI: 10.1016/s0257-8972(01)01340-8

Google Scholar