Ti-Mo Alloys Used in Medical Applications

Article Preview

Abstract:

Metallic biomaterials are used in various applications of the most important medical fields (orthopedic, dental and cardiovascular). The main metallic biomaterials are stainless steels, Co-based alloys and Ti-based alloys. Recently, titanium alloys are getting much attention for biomaterials because these types of materials have very good mechanical properties, good corrosion resistance and an excellent biocompatibility. The paper contains important information about titanium alloys used for biomedical applications, which are considered the most widely. It is very important to understand the microstructural evolution and property-microstructure relationship in implant alloys. In the present paper, authors present a short literature review on general aspects of promising biocompatible binary Ti-Mo alloys compared with CoCr and stainless steel alloys, as an alternative of the known metallic biomaterials. This alloys show superior mechanical compatibility and very good biocompatibility. The aim of this review is to highlight the mechanical properties for several types of biomaterials, their application in medical field, especially the Ti-Mo group.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-111

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, Biomedical applications of titanium and its alloys, Biological Materials Science 2 (2008) 46-49.

Google Scholar

[2] C. Oldani, A. Dominguez, Titanium as a Biomaterial for Implants, Recent Advances in Arthroplasty, InTech Open, Skopje, (2012).

DOI: 10.5772/27413

Google Scholar

[3] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials 3 (2014) 1709-1800.

DOI: 10.3390/ma7031709

Google Scholar

[4] M. Niinomi, Low Modulus Titanium Alloys for Inhibiting Atrophy, InTech Open, Skopje, 249-268.

Google Scholar

[5] B. Ghiban, Metallic Biomaterials, Printech, Bucuresti, (1999).

Google Scholar

[6] S.M. Dudescu, D.C. Bratu, R.V. Pop, M. Petrisor, M. Pacurar, Influence of the chemical compotion on the mechanical properties of orthodontic archwires, Revista de Chimie (Bucharest) 64 (2013) 771-775.

Google Scholar

[7] D. Bombac, M. Brojan, P. Fajfar, F. Kosel, R. Turk, Review of materials in medical applications, Materials and Geoenvironment 54 (2007) 471-499.

Google Scholar

[8] Information on http: /www. straumann. implantdivision. ro.

Google Scholar

[9] Information on http: /imgarcade. com/1/titanium-joint-replacement.

Google Scholar

[10] Information on http: /www. orthopaedic-implants. com/ (20. 01. 2015).

Google Scholar

[11] Informationonhttp: /www. medicalexpo. com/manufacturer/aortic-valve-prosthesis-4609. html.

Google Scholar

[12] J.R. Davis, Handbook of materials for medical devices, ASM International, New York, (2003).

Google Scholar

[13] Information on http: /www. synthes. com.

Google Scholar

[14] M.G. Minciuna, P. Vizureanu, D.C. Achitei, N. Ghiban, A.C. Sandu, N.C. Forna, Structural Characterization of Some CoCrMo Alloys with Medical Applications, Revista de Chimie (Bucharest) 65 (2014) 335-338.

Google Scholar

[15] M. Long, H.J. Rack, Titanium alloys in total joint replacement-A materials science perspective. Biomaterials 19 (1998) 1621–1639.

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[16] K. Wang, The use of titanium for medical applications in the USA, Materials Science and Engineering A 223 (1996) 134-137.

Google Scholar

[17] R. Chelariu, L.G. Bujoreanu, C. Roman, Materiale metalice biocompatibile cu baza titan, Politehnium, Iaşi, (2006).

Google Scholar

[18] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Materials Science 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[19] G. Ciobanu, G. Carja, O. Ciobanu, I. Sandu, A. Sandu, SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants, Micron 40 (2009) 143-146.

DOI: 10.1016/j.micron.2007.11.011

Google Scholar

[20] Information on http: /www. uobabylon. edu. iq.

Google Scholar

[21] N.R. Patel, P. P. Gohil, A review on Biomaterials: Scope, Applications & Human Anatomy Significance, Biomaterials 2 (2012) 91-101.

Google Scholar

[22] B. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys; ASM International: Materials Park, Ohio, (2007).

Google Scholar

[23] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering A 243 (1998) 231-236.

DOI: 10.1016/s0921-5093(97)00806-x

Google Scholar

[24] Y. Zhan, C. Li, W. Jiang, β-type Ti-10Mo-1. 25Si-xZr biomaterials for applications in hard tissue replacements, Materials Science and Engineering C 32 (2012) 1664–1668.

DOI: 10.1016/j.msec.2012.04.059

Google Scholar

[25] L.J. Xu, Y.Y. Chen, Z.G. Liu, F.T. Kong, The microstructure and properties of Ti-Mo-Nb alloys for biomedical application, Journal of Alloys and Compounds 453 (2008) 320-324.

DOI: 10.1016/j.jallcom.2006.11.144

Google Scholar

[26] C. Li, Y. Zhan, W. Jiang, β-Type Ti-Mo-Si ternary alloys designed for biomedical applications, Materials and Design 2 (2012) 479-482.

DOI: 10.1016/j.matdes.2011.08.012

Google Scholar

[27] D.F. Williams, Definitions in Biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials 4 (1986) 55-66.

Google Scholar

[28] S.G. Steinemann, Titanium-the material of choice?, Periodontology 17 (2000) 7–21.

Google Scholar

[29] M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C.H. Mickel, J. Eckert, Designing biocompatible Ti-based metallic glasses for implant applications, Materials Science and Engineering C 33 (2013) 875–883.

DOI: 10.1016/j.msec.2012.11.015

Google Scholar

[30] Q. Chen, A. George, Metallic implant biomaterials, Materials Science and Engineering R. 87 (2015) 1–57.

Google Scholar

[31] S. Tamilselvi, V. Raman, N. Rajendran, Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy, Electrochim Acta 52 (2006) 839-846.

DOI: 10.1016/j.electacta.2006.06.018

Google Scholar

[32] N.T.C. Oliveira, A.C. Guastaldi, Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications, Acta Biomaterialia 5 (2009) 399-405.

DOI: 10.1016/j.actbio.2008.07.010

Google Scholar

[33] M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, R. Baldev, Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy, Corrosion Science 46 (2004) 877-892.

DOI: 10.1016/s0010-938x(03)00186-0

Google Scholar

[34] M.G. Minciuna, P. Vizureanu, D.C. Achitei, B. Ghiban, A.C. Sandu, D. Mareci, A. Balan, Electrochemical Behaviour of CoCrMo and CoCrMoSi5 alloys at Different Simulated Psysiological Medium, Revista de Chimie (Bucharest) 65 (2014) 1138-1141.

Google Scholar