[1]
P. García, M. Campos, J.M. Torralba, Dimensional consistency achieved in high-performance synchronizing hubs, Metalurgia 49 (2013) 55-64.
DOI: 10.3989/revmetalm.1218
Google Scholar
[2]
G.S. Upadhyaya, Sintered Metallic and Ceramic Materials Preparation, Properties and Applications, J. Wiley & Sons: New York, (1999).
Google Scholar
[3]
I.N. Popescu, C. Ghiţă, V. Bratu, G.P. Navarro, Tribological behaviour and statistical experimental design of sintered iron–copper based composites, Applied Surface Science 285 (2013) 72-85.
DOI: 10.1016/j.apsusc.2013.08.007
Google Scholar
[4]
W.F. Wang, Effect of alloying elements and processing factors on the microstructure and hardness of sintered and induction-hardened Fe–C–Cu alloys, Materials Science and Engineering A 402 (2005) 92–97.
DOI: 10.1016/j.msea.2005.04.016
Google Scholar
[5]
Z. Zhang, R. Sandtrom, L. Wang, Modelling of swelling of Fe-Cu compacts sintered at temperatures above the copper melting point, Journal of Materials Processing Technology 152 (2004) 131-135.
DOI: 10.1016/j.jmatprotec.2004.03.025
Google Scholar
[6]
L. Alzati, R. Gilardi, S. Zurcher, G. Pozzi, S. Fontana, Guidelines for optimal selection of graphite type for PM parts producti, (1999).
Google Scholar
[7]
K. Jonnalagadda, Influence of graphite type on copper diffusion in Fe –Cu –C PM alloys, Materials 3 (1999) 45-55.
Google Scholar
[8]
C. Teisanu, S. Gheorghe, I. Ciupitu, Influence of the chemical composition on the porosity of the sintered iron-copper based alloys, Proceedings of the Euro International Powder Metallurgy Congress and Exhibition 1 (2009) 134-140.
Google Scholar
[9]
I. Ciupitu, S. Sontea, M. Didu, G. Deliu, Studies on the press ability and sintering of powder mixtures based on iron powders and metallic carbides, Proceedings of International Conference Deformation and Fracture in Structural PM Materials 1 (1999).
Google Scholar
[10]
I. Ciupitu, N. Dumitru, C. Teisanu, St. Gheorghe: Choosing optimal parameters for sintering technology of the samples made from mixtures of Fe, Cuand graphite, Proceedings of Congress and Exhibition on Powder Metallurgy 1 (2001) 292-296.
Google Scholar
[11]
N. Svinolobova, P.N. Ostrik, A.N. Kovzik, Theory, preparation technology and properties of powders and fibres. Properties of iron-copper master alloy powder, Powder Metallurgy and Metal Ceramics 36 (1997) 45-50.
DOI: 10.1007/bf02676139
Google Scholar
[12]
I. Ciupitu, G. Benga, A. Ionescu, D. Savu, The improving of the process of the iron, the cast iron and the copper powder mixing, Materials Science Forum 672 (2011) 76-79.
DOI: 10.4028/www.scientific.net/msf.672.76
Google Scholar
[13]
M. Mangra, C. Ghermec, T. Popescu, RO Patent 122678. (2007).
Google Scholar
[14]
M.C. Criveanu, M. Rosso, M. Actis-Grande, The effect of GASCARBUSINT, on tensile properties of sintered steels, Journal of Optoelectronics and Advanced Materials 15 (2013) 803-806.
Google Scholar
[15]
M.C. Criveanu, O. Gingu, G. Sima, M. Mangra, I. Bucse, M. Ciobanu, C. Ghermec, Properties of Sintered Steels Made from Fe Powders by Carburizing-Sintering Process, European Powder Metallurgy congress 1 (2009) 55-60.
Google Scholar
[16]
D. Berner, Swelling of Iron-Copper Mixtures during Sintering and Infiltration, Modern Developments in Powder Metallurgy 6 (1973) 237-240.
Google Scholar
[17]
N. Verma, S. Anand, Effect of Carbon Addition and Sintering Temperatures on Densification and Microstructural Evolution of Sinter-HardeningAlloy Steels, PhD Thesis, Indian Institute of Technology, (1999).
DOI: 10.21061/jumr.v2i0.0615
Google Scholar
[18]
M.L. Marucci, F.G. Hanejko, Effect of Copper Alloy Addition Method on the Dimensional Response of Sintered Fe-Cu-C Steels, Advances in Powder Metallurgy&Particulate Materials 3 (2010) 234-239.
Google Scholar