[1]
Y Ohama. Polymer-based admixtures, Cem Concr Compos. 20(1998) 189–212.
Google Scholar
[2]
H Lutz, R Bayer. Dry mortars [M]. Ullmann's encyclopedia of industrial chemistry, 2010: doi: 10. 1002/14356007. f16 f01. pub2.
Google Scholar
[3]
G Y D Walters. VAE redispersible-powder hydraulic-cement admixtures, Concr Int. 14(1992) 30–34.
Google Scholar
[4]
J V Brien, K C Mahboub. Influence of polymer type on adhesion performance of a blended cement mortar, Int J Adhes Adhes. 43(2013) 7–13.
DOI: 10.1016/j.ijadhadh.2013.01.007
Google Scholar
[5]
Y S Lee, M K Joo, K S Yeon. Durability of high-fluidity polymer-modified mortar using redispersible polymer powder, the 5th Asian Symposium on Polymers in Concrete, India. (2006) 175–185.
DOI: 10.4334/jkci.2005.17.5.703
Google Scholar
[6]
Y Ohama. Principle of latex modification and some typical properties of latex-modified mortars and concretes, ACI Mater J. 84(1987) 511–518.
DOI: 10.14359/2463
Google Scholar
[7]
Z Su. Microstructure of polymer cement concrete (in English, dissertation). Delft: Technische Universiteit Delft, (1995).
Google Scholar
[8]
D A Silva, P J M Monteiro. Analysis of C3A hydration using soft X-rays transmission microscopy: effect of EVA copolymer, Cem Concr Res. 35(2005) 2026–(2032).
DOI: 10.1016/j.cemconres.2005.02.002
Google Scholar
[9]
A Beeldens, Van Gemert D, H Schorn, et al. From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete, Mater Struct. 38(2005) 601–607.
DOI: 10.1007/bf02481591
Google Scholar
[10]
D Van Gemert, A Beeldens. Evolution in modeling microstructure formation in polymer-cement concrete, the 7th Asian Symposium on Polymers in Concrete, Turkey. (2012) 59–73.
DOI: 10.1515/rbm-2013-6584
Google Scholar
[11]
P K Metha. Scanning electron micrographic studies of ettringite formation, Cem Concr Res. 6(1976) 169–182.
Google Scholar
[12]
H M Jennings, B J Dalgeish, P L Pratt. Morphological development of hydrating tricalcium silicate as examined by electron microscopy techniques, J Am Ceram Soc. 64(1981) 567–572.
DOI: 10.1111/j.1151-2916.1981.tb10219.x
Google Scholar
[13]
P M Wang. SEM analyses of the hydrates of pure clinker minerals, Portland cement clinkers and cements (in German, dissertation). Niedersachsen: Technischen Universität Clausthal, (1990).
Google Scholar
[14]
M U K Afridi, Y Ohama, K Demura, et al. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars, Cem Concr Res. 33(2003) 1715–1721.
DOI: 10.1016/s0008-8846(02)01094-3
Google Scholar
[15]
J P Santos, P Corpart, K Wong, et al. Heterogeneity in Styrene-Butadiene Latex Films, Langmuir. 20(2004) 10576–10582.
DOI: 10.1021/la048319a
Google Scholar
[16]
M Gretz, J Plank. An ESEM investigation of latex film formation in cement pore solution, Cem Concr Res. 41(2011) 184–190.
DOI: 10.1016/j.cemconres.2010.11.005
Google Scholar
[17]
T Pavlitschek, Y Jin, J Plank. Film formation of a non-ionic ethylene-vinyl acetate latex dispersion in cement pore solution, the 14th International Congress on Polymers in Concrete, China. (2013) 316–321.
DOI: 10.4028/www.scientific.net/amr.687.316
Google Scholar
[18]
Q Z Sheng, S Diamond. SEM Observations of latex Networks in Latex-Modified Concrete, the 12th International Conference on Cement Microscopy, Canada. (1990) 403–410.
Google Scholar
[19]
P M Wang, G R Zhao, G F Zhang. Research progress on microstructure of polymer cement concrete, J Chin Ceram Soc. 42(2014) 653–660.
Google Scholar
[20]
GB/T 17671-1999: Method of testing cements-Determination of strength(ISO), Chinese National Standard.
Google Scholar
[21]
GB 1346-2001: Test methods for water requirement of normal consistency, setting time and soundness of the Portland cements, Chinese National Standard.
Google Scholar
[22]
P M Wang, Q Xu, J Stark. Mechanical properties of styrene-butadiene emulsion modified cement mortar used for repair of bridge surface, J Build Mater. 4(2001) 1–6.
Google Scholar