Development of Polymer Concrete with Non-Standardised Fillers for Innovative Building Materials

Article Preview

Abstract:

The use of polymer concrete in building construction is a relatively new application. A building block system (Modular Assembly System: MAS-System) and the mobile fabrication technology for the reversible construction of buildings with regionally available aggregates, were developed in a project of applied research. The aspects of the successful material development are described, especially with regard to the characterisation of both the binders and the polymer concretes, considering strength and durability. The polymer concrete consists approximately of 90 % fillers, 10 % polymer binder and additives. The investigation of the binder-system included the determination of gel time and temperature development, shrinkage, wetting of formwork materials and immersion tests with marine water. The aim was an adaptation and optimisation of the binder system. The characterisation of mechanical properties of the polymer concrete was realised by determining its strength in a temperature range between - 40 °C and 60 °C. Compression tests on wall segments were also realised. Ageing is an important aspect of the durability of polymer bonded materials. Special tests were used for an accelerated ageing, including impacts of temperature change, cold rain water and natural radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

484-491

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Dimmig-Osburg, Polymerbeton aus Wüstensand - ein Projekt der angewandten Forschung, in: Wittmann, F. H. (Hrsg. ) Restoration of Buildings and Monuments, Vol. 20, No. 5, 2014 Aedificatio Publishers, 2014, S. 361-370.

DOI: 10.1515/rbm14.20.5-0033

Google Scholar

[2] F. Vogt, A. Dimmig-Osburg, G. Plötner, Polymer binders for innovative building materials, in: Kunststoffe im Automobilbau, Kunststofftechnik, VDI Verlag GmbH, Düsseldorf (2014), S. 1-11.

Google Scholar

[3] R.P. Gieler, A. Dimmig-Osburg, Kunststoffe für den Bautenschutz und die Betoninstandsetzung, Birkhäuser Verlag, Basel, (2006).

DOI: 10.1007/3-7643-7372-5

Google Scholar

[4] W. -P. Ettel, Kunstharze und Kunststoffdispersionen für Mörtel und Betone: Struktur der Polymere; Planung, Bemessung, Prüfung Beton-Verlag, Düsseldorf, (1998).

Google Scholar

[5] DIN EN ISO 2535: 2003-02: Kunststoffe, ungesättigte Polyesterharze, Bestimmung der Gelzeit bei Umgebungstemperatur (ISO 2535: 2001), Deutsche Fassung EN ISO 2535: (2002).

DOI: 10.31030/9429188

Google Scholar

[6] DIN EN 196-1: 2005-05: Prüfverfahren für Zement - Teil 1: Bestimmung der Festigkeit. Deutsche Fassung EN 196-1: (2005).

DOI: 10.31030/2482416

Google Scholar

[7] DIN EN ISO 604: Kunststoffe - Bestimmung von Druckeigenschaften (ISO 604: 2002), Deutsche Fassung EN ISO 604: (2003).

DOI: 10.31030/9515267

Google Scholar

[8] DIN EN ISO 178: 2013: 09: Kunststoffe - Bestimmung der Biegeeigenschaften (ISO 178: 2010 + Amd. 1: 2003), Deutsche Fassung EN ISO 178: 2010 + A1: (2013).

DOI: 10.31030/1931347

Google Scholar

[9] DIN 50905-4: 1987-01: Korrosion der Metalle; Korrosionsuntersuchungen - Durchführung von chemischen Korrosionsversuchen ohne mechanische Belastung in Flüssigkeiten im Laboratorium.

DOI: 10.31030/2794294

Google Scholar

[10] DIN EN 772-1: 2011-07: Prüfverfahren für Mauersteine, Teil 1: Bestimmung der Druckfestigkeit, Deutsche Fassung EN 772-1: (2003).

DOI: 10.31030/2408295

Google Scholar

[11] DIN EN 1052 - 1: 1998-12: Prüfverfahren für Mauerwerk, Teil 1: Bestimmung der Druckfestigkeit, Deutsche Fassung EN 1052-1: (1998).

DOI: 10.31030/8015021

Google Scholar