Tibet Red Deer (Cervus Elaphus Wallichi) Return: Implications for Ecological Environment Improving

Article Preview

Abstract:

Red deer (Cervus elaphus wallichi); mtDNA; Ecological environment ; Conservation Abstract. Full cytochrome b gene sequence of mtDNA was applied to identify and analyze nine fecal samples collected from Tibet, China in this research. By searching for highly similar sequences (megablast) on NCBI, we have found all nine samples that have the highest similarities with the published sequence: AY044861 of the red deer (Cervus elaphus wallichi). By comparing our sequences with those available on GenBank, all nine samples were identified as the red deer (Cervus elaphus wallichi) by high sequence similarity. Therefore, we ascertain one ecological recovery locality for the red deer in Tibet and hope this study will enhance the conservation work for this species and local biodiversity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 113-116)

Pages:

115-118

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hsieh HM, Chiang HL, Huang NE, Linacre A and LeeCI. Forensic Sci Int , 122: 7-8. (2001).

Google Scholar

[2] Shi YF, Shan XN, Li J, Shi TY and Zheng AL. Acta Genet Sin, 31(4): 395-402. (2004).

Google Scholar

[3] Liu XH, Wang YQ, Liu ZQ and Zhou KY. Zool Res, 24(1): 27-33. (2003).

Google Scholar

[4] Randi E, Mucci N, Claro-Hergueta F, Bonnet A and Douzery EJP. Anim Conserv , 4: 1-11. (2001).

Google Scholar

[5] Polziehn RO and Strobeck C. Mol Phylogenet Evol , 10(2): 249-258. (1998).

Google Scholar

[6] Kuwayama R and Ozawa T. Mol Phylogenet Evol , 15(1): 115-123. (2000).

Google Scholar

[7] Zachos F, Hartl GB, Apollonio M andReutershan T. Mamm Biol , 68: 284-298. (2003).

Google Scholar

[8] Hartl GB, Zachos F and Nadlinger K. Mamm Biol, 326: S27-S42. (2003).

Google Scholar

[9] Hartl GB, Zachos F, Nadlinger K, Ratkiewicz M and Lang G . Mamm Biol, 70(1): 24-34. (2005).

Google Scholar

[10] Ludt CJ, Schroeder W, Rottmann O and Kuehn R. Mol Phylogenet Evol , 31: 1064-1083. (2004).

Google Scholar

[11] Wu H, Wan QH and Fang SG. Biol Conserv , 119: 183-190. (2004).

Google Scholar

[12] Shan X, Shi Y, Zhang H, Xu C, Li J and Zheng A. Chin J Zool , 39(4): 35-39. (2004).

Google Scholar

[13] Yi GC, Zhang XM and Shan XN. Acta Genet Sin , 29(8): 674-680. (2002).

Google Scholar

[14] Chikuni K, Mori Y, Tabata T, Saito M, and Kosugiyama M. J Mol Evol, 41: 859-866. (1995).

Google Scholar

[15] Thompson JD, Higgins DG and Gibson TJ. Nucleic Acids Res, 22: 4673-4680. (1994).

Google Scholar

[16] Rozas J, Barrio SD, Messegyer JC and Rozas R. Bioinformatics , 19: 2496-2497. (2003).

Google Scholar

[17] Kumar S, Tamura K and Nei M. Brief Bioinform. 5: 150-163. (2004).

Google Scholar

[18] Kimball RT, Braun EL, Zwartjes PW andLigon JD. Mol Phylogenet Evol , 11: 38-54. (1999).

Google Scholar