[1]
S. Uraguchi, M. Kiyono, T. Sakamoto, I. Watanabe and K. Kuno: Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb. ), Planta. Vol. 230 (2009).
DOI: 10.1007/s00425-009-0939-x
Google Scholar
[2]
L. Wang, Q.X. Zhou, L.L. Ding and Y.B. Sun: Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator, J. Hazard. Mater. Vol. 154 (2008), pp.818-825.
DOI: 10.1016/j.jhazmat.2007.10.097
Google Scholar
[3]
S. Sabreen and S.I. Sugiyama: Trade-off between cadmium tolerance and relative growth rate in 10 grass species, Environ. Exp. Bot. Vol. 63 (2008), pp.327-332.
DOI: 10.1016/j.envexpbot.2007.10.019
Google Scholar
[4]
R. Aina, M. Labra, P. Fumagalli, C. Vannini, M. Marsoni, U. Cucchi, M. Bracale, S. Sgorbati and S. Citterio: Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots, Environ. Exp. Bot. Vol. 59 (2007).
DOI: 10.1016/j.envexpbot.2006.04.010
Google Scholar
[5]
Q. Feng, P.D. Tai, P.J. Li, Y.L. Guo and S.S. Fu, The role of sulfur in cadmium accumulation of marigold plant, J. Plant. Nutr. Vol. 32 (2009), pp.919-928.
DOI: 10.1080/01904160902870697
Google Scholar
[6]
D.R. Hoagland and D.I. Arnon: The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, University of California. Berkeley, Vol. 347 (1950), pp.1-32.
Google Scholar
[7]
M.M. Bradford: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye-binding, Anal. Biochem. Vol. 72 (1976), pp.248-254.
DOI: 10.1016/0003-2697(76)90527-3
Google Scholar
[8]
J.W. Rijstenbil and J.A. Wijnholds: HPLC analysis of nonprotein thiols in planktonic diatoms: pool size, redox state and response to copper and cadmium exposure, Mar. Biol. Vol. 127 (1996), pp.45-54.
DOI: 10.1007/bf00993642
Google Scholar
[9]
G. Noctor and C.H. Foyer: Simultaneous measurement of foliar glutathione, γ-glutamylcysteine, and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione, Anal. Biochem. Vol. 264 (1998).
DOI: 10.1006/abio.1998.2794
Google Scholar
[10]
J. Shen, C. Tang, Z. Rengel and F. Zhang: Root-induced acidification and excess cation uptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil, Plant Soil. Vol. 260 (2004), pp.69-77.
DOI: 10.1023/b:plso.0000030172.10414.e6
Google Scholar
[11]
Z. Wang, J. Shen and F. Zhang: Cluster-root formation, carboxylate exudation and proton release of Lupinus pilosus Murr. as affected by medium pH and P deficiency, Plant Soil. Vol. 287 (2006), pp.247-256.
DOI: 10.1007/s11104-006-9071-x
Google Scholar
[12]
C. Chaffei, H. Gouia and M.H. Ghorbel: Nitrogen metabolism in tomato plants under cadmium stress, J. Plant. Nutr. Vol. 26 (2003). P. 1617-1634.
Google Scholar
[13]
L. Marcano, I. arroyo, Campo. A. Del and X. Montiel: Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L, Environ. Res. Vol. 94 (2004), pp.221-226.
DOI: 10.1016/s0013-9351(03)00121-x
Google Scholar
[14]
S.G. Seo, S.W. Kang, I.S. Shim, W. Kim and S. Fujihara: Effects of various chemical agents and early ethylene production on floral senescence of Hibiscus syriacus L, Plant. Growth. Regul. Vol. 57 (2009), pp.251-258.
DOI: 10.1007/s10725-008-9342-z
Google Scholar
[15]
D.E. Salt, R.C. Prince, L.J. Pickering and I. Raskin: Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard, Plant. Physiol. Vol. 109 (1995), pp.1427-1433.
DOI: 10.1104/pp.109.4.1427
Google Scholar
[16]
L.L. Lu, S.K. Tian, X.E. Yang, T.Q. Li and Z.L. He, Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii, J. Plant. Physiol. Vol. 166 (2009), pp.579-587.
DOI: 10.1016/j.jplph.2008.09.001
Google Scholar
[17]
TY-T. Ng, P.S. Rainbow, C. Amiard-Triquet, J.C. Amiard and W.X. Wang: Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel Perna viridis, Aquatic. Toxicology. Vol. 84 (2007), pp.153-161.
DOI: 10.1016/j.aquatox.2007.01.010
Google Scholar
[18]
G. de la Rosa, A. Martínez-Martínez, H. Pelayo, J. R. Peralta-Videa, B. Sanchez -Salcido and J. L. Gardea-Torresdey: Production of low-molecular weight thiols as a response to cadmium uptake by tumbleweed (Salsola kali), Plant. Physiol. Biochem. Vol. 43 (2005).
DOI: 10.1016/j.plaphy.2005.03.013
Google Scholar
[19]
M-P. Isaure, B. Fayard, G. Sarret, S. Pairis and J. Bourguignon: Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy, Spectrochimica. Acta. Part B. Vol. 61 (2006).
DOI: 10.1016/j.sab.2006.10.009
Google Scholar
[20]
S. Clemens: Molecular mechanisms of plant metal tolerance and homeostasis, Planta. Vol. 212 (2001), pp.475-486.
DOI: 10.1007/s004250000458
Google Scholar
[21]
G. de la Rosa, J. R. Peralta-Videa, M. Montes, J.G. Parsons, I. Cano-Aguilera and J.L. Gardea-Torresdey: Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies, Chemosphere. Vol. 55 (2004).
DOI: 10.1016/j.chemosphere.2004.01.028
Google Scholar