[1]
Y. Li, N. Kawashima, J. Li, A.P. Chandra, A.R. Gerson, A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid. Interfac. 197-198 (2013) 1-32.
DOI: 10.1016/j.cis.2013.03.004
Google Scholar
[2]
H. R Watling, The bioleaching of sulphide minerals with emphasis on copper sulphides—a review, Hydrometallurgy 84 (2006) 81-108.
DOI: 10.1016/j.hydromet.2006.05.001
Google Scholar
[3]
S. Y Shi, Z. H Fang, Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans, Hydrometallurgy 75 (2004) 1-10.
DOI: 10.1016/j.hydromet.2004.05.008
Google Scholar
[4]
S. Shi, Z. Fang, Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an air-lift reactor, Int. J. Miner. Process. 76 (2005) 3-12.
DOI: 10.1016/j.minpro.2004.05.005
Google Scholar
[5]
J. R Ban, G. H Gu, K. T Hu, Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans, T. Nonferr. Metal. Soc. 23 (2013) 494-500.
DOI: 10.1016/s1003-6326(13)62490-5
Google Scholar
[6]
R. Liu, W. Sun, Y. Hu, D. Wang, Surface chemical study of the selective separation of chalcopyrite and marmatite, Mining Science and Technology (China) 20 (2010) 542-545.
DOI: 10.1016/s1674-5264(09)60240-4
Google Scholar
[7]
W. Qin, F. Jiao, W. Sun, M. He, H. Huang, Selective Flotation of Chalcopyrite and Marmatite by MBT and Electrochemical Analysis, Ind. Eng. Chem. Res. 51 (2012) 11538-11546.
DOI: 10.1021/ie300410f
Google Scholar
[8]
W. Qin, F. Jiao, W. Sun, X. Wang, B. Liu, J. Wang, K. Zeng, Q. Wei, K. Liu, Effects of sodium salt of N, N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties, Colloid. Surf. A-Physicochem. Eng. Asp. 421 (2013).
DOI: 10.1016/j.colsurfa.2013.01.009
Google Scholar
[9]
W. Zeng, G. Qiu, H. Zhou, J. Peng, M. Chen, S.N. Tan, W. Chao, X. Liu, Y. Zhang, Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate, Bioresource. Technol. 101 (2010).
DOI: 10.1016/j.biortech.2010.04.003
Google Scholar
[10]
N. P Marhual, N. Pradhan, R.N. Kar, L.B. Sukla, B.K. Mishra. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample, Bioresource. Technol. 99 (2008).
DOI: 10.1016/j.biortech.2008.03.003
Google Scholar
[11]
K.Q. Jiang, Z.H. Guo, X.Y. Xiao, X.Y. Wei, Effect of moderately thermophilic bacteria on metal extraction and electrochemical characteristics for zinc smelting slag in bioleaching system, T. Nonferr. Metal. Soc. 22 (2012) 3120-3125.
DOI: 10.1016/s1003-6326(11)61580-x
Google Scholar
[12]
H. Zhao, J. Wang, C. Yang, M. Hu, X. Gan, L. Tao, W. Qin, G. Qiu, Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions, Hydrometallurgy 151 (2015) 141-150.
DOI: 10.1016/j.hydromet.2014.11.009
Google Scholar
[13]
S. Y Shi, Z.H. Fang, J.R. Ni, Electrochemistry of marmatite–carbon paste electrode in the presence of bacterial strains, Bioelectrochemistry 68 (2006) 113-118.
DOI: 10.1016/j.bioelechem.2005.05.006
Google Scholar
[14]
J. Liu, S. Wen, X. Chen, S. Bai, D. Liu, Q. Cao, DFT computation of Cu adsorption on the S atoms of sphalerite (110) surface, Miner. Eng. 46 (2013) 1-5.
DOI: 10.1016/j.mineng.2013.03.026
Google Scholar
[15]
S.H. Yin, A.X. Wu, G.Z. Qiu, Bioleaching of low-grade copper sulphides, T. Nonferr. Metal. Soc. 18 (2008) 707-713.
Google Scholar
[16]
L. Quan, Electrochemical flotation separation of marmatite from pyrrhotite in the presence of copper ion, T. Nonferr. Metal. Soc. 10 (2000) 90-92.
Google Scholar