Blue-Copper Proteins: Expression of Coding Genes from Sulfobacillus Spp. and Iron Oxidation in Column Bioleaching Tests

Article Preview

Abstract:

In bioleaching, the chemiolithotrophic community plays an important role as oxidizers of sulfur compounds and ferrous iron. Ferrous iron oxiding microorganisms are key players in the process, as ferric iron is absolutely required to solubilize metal sulfide ores. Members of the Sulfobacillus genus (able to oxidize ferrous iron) were predominant (22 - 95%) in a chalcopyrite bioleaching columns test. In order to obtain new insight about the mechanism of iron oxidation in Sulfobacillus we investigated the presence and expression of genes potentially related to iron oxidation by Sulfobacillus, especially the group of the so-called blue-copper proteins rusticyanin (rus) and sulfocyanin (soxE) in the course of the experiment. The physicochemical parameters and the population dynamics were monitored periodically in the columns and the metatranscriptome was analyzed by using pyro-sequencing. The average temperature inside the column ranged from 22 to 57 °C and the Fe(II) oxidation rate at 45 °C varied between 8 and 42 mg L-1h-1 along 300 days of operation. The metatranscriptomic analysis reveals an over-expression of 9-13 folds of the putative rus and soxE genes in four strains of Sulfobacillus spp. when the Sulfobacillus proportion in the column was >80% and the Fe(II) oxidation rate measured at 45 °C reached 10 mg L-1h-1. Some cytochromes from the electron transport chain were also over-expressed, on a range of 7 - 10 folds under those operational conditions. These results support the hypothetical participation of blue-copper proteins in the iron oxidation pathway of Sulfobacilli. Culture assays and more specific expression analysis are necessary in order to confirm this hypothesis. In addition, we attempt to establish the relationship between rusticyanin and sulfocyanin genes and perform a protein sequence analysis that allows us to infer the actual function of these proteins in Sulfobacillus species.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-337

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.J. Bird, V. Bonnefoy, D. K Newman, Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19 (2011) 330-340.

DOI: 10.1016/j.tim.2011.05.001

Google Scholar

[2] W.J. Ingledew, Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim. Biophys. Acta. 683 (1982) 89–117.

DOI: 10.1016/0304-4173(82)90007-6

Google Scholar

[3] S.J. Ferguson, W.J. Ingledew, Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim. Biophys. Acta 1777 (2008) 1471-1479.

DOI: 10.1016/j.bbabio.2008.08.012

Google Scholar

[4] M.T. Giudici-Orticoni, F. Guerlesquin, M. Bruschi, W. Nitschke, Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c(4). J Biol Chem. 274 (1999) 30365–30369.

DOI: 10.1074/jbc.274.43.30365

Google Scholar

[5] J. Castresana, M. Lübben, M. Saraste, New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol. 250 (1995) 202-210.

DOI: 10.1006/jmbi.1995.0371

Google Scholar

[6] Komorowski, L., Schäfer, G. 2001. Sulfocyanin and subunit II, two copper proteins with novel features, provide new insight into the archaeal SoxM oxidase supercomplex. FEBS Lett. 487: 351-355.

DOI: 10.1016/s0014-5793(00)02343-7

Google Scholar

[7] A.P. Yelton, L.R. Comolli, N.B. Justice, C. Castelle, V.J. Denef, B.C. Thomas, J.F. Banfield, Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics. 14(2013).

DOI: 10.1186/1471-2164-14-485

Google Scholar

[8] C. Castelle, M. Guiral, G. Malarte, F. Ledgham, G. Leroy, M. Brugna, M. -T. Giudici-Orticoni, A new iron-oxidizing/O-2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem. 283 (2008).

DOI: 10.1074/jbc.m802496200

Google Scholar

[9] M. Dopson, C. Baker-Austin, P.L. Bond, Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology. 151 (2005) 4127-4137.

DOI: 10.1099/mic.0.28362-0

Google Scholar

[10] E.E. Allen, G.W. Tyson, R.J. Whitaker, J.C. Detter, P.M. Richardson, J.F. Banfield, Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA. 104 (2007) 1883-1888.

DOI: 10.1073/pnas.0604851104

Google Scholar

[11] M.V. Botuyan, A. Toy-Palmer, J. Chung, R.C. 2nd Blake, P. Beroza, D.A. Case, H,J. Dyson,. NMR solution structure of Cu(I) rusticyanin from Thiobacillus ferrooxidans: structural basis for the extreme acid stability and redox potential. J Mol Biol. 263 (1996).

DOI: 10.1006/jmbi.1996.0613

Google Scholar

[12] X. Guo, H. Yin, Y. Liang, Q. Hu, X. Zhou, Y. Xiao, L. Ma, X. Zhang, G. Qiu, X. Liu, Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One. 9 (2014).

DOI: 10.1371/journal.pone.0099417

Google Scholar

[13] T.I. Bogdanova, I.A. Tsaplina, T.F. Kondrat'eva, V.I. Duda, N.E. Suzina, V.S. Melamud, T.P. Tourova, G.I. Karavaiko, Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol. 56 (2006).

DOI: 10.1099/ijs.0.64106-0

Google Scholar

[14] N. Okibe, M. Gericke, K.B. Hallberg, D.B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol. 69 (2003) 1936-(1943).

DOI: 10.1128/aem.69.4.1936-1943.2003

Google Scholar

[15] S. Marín, M. Acosta, P. Galleguillos, C. Chibwana, H. Strauss, C. Demergasso, Insights into the active carbon fixation pathways of a microbial community in a chalcopyrite bioleaching column. 2015 This issue.

DOI: 10.4028/www.scientific.net/amr.1130.367

Google Scholar

[16] C. Salazar, M. Acosta, P. Galleguillos, A. Shmaryahu, R. Quatrini, D.S. Holmes, C. Demergasso, Analysis of gene expression in response to copper stress in Acidithiobacillus ferrooxidans strain D2, isolated from a copper bioleaching operation. Advanced Materials Research, 825 (2013).

DOI: 10.4028/www.scientific.net/amr.825.157

Google Scholar

[17] N. Guex, M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18 (1997) 2714-2723.

DOI: 10.1002/elps.1150181505

Google Scholar

[18] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (2004) 1792-1797.

DOI: 10.1093/nar/gkh340

Google Scholar

[19] Information on: http: /toolkit. tuebingen. mpg. de/ali2d.

Google Scholar

[20] L.G. Ryden, L.T. Hunt, Evolution of protein complexity: The blue-copper containing oxidases and related proteins. J Mol Evol. 36 (1993) 41-66.

DOI: 10.1007/bf02407305

Google Scholar

[21] M.G. Savelieff, T.D. Wilson, Y. Elias, M.J. Nilges, D.K. Garner, Y. Lu, Experimental evidence for a link among cupredoxins: red, blue, and purple copper transformations in nitrous oxide reductase. Proc Natl Acad Sci U S A. 105 (2008)7919-7924.

DOI: 10.1073/pnas.0711316105

Google Scholar