[1]
L.J. Bird, V. Bonnefoy, D. K Newman, Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19 (2011) 330-340.
DOI: 10.1016/j.tim.2011.05.001
Google Scholar
[2]
W.J. Ingledew, Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim. Biophys. Acta. 683 (1982) 89–117.
DOI: 10.1016/0304-4173(82)90007-6
Google Scholar
[3]
S.J. Ferguson, W.J. Ingledew, Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim. Biophys. Acta 1777 (2008) 1471-1479.
DOI: 10.1016/j.bbabio.2008.08.012
Google Scholar
[4]
M.T. Giudici-Orticoni, F. Guerlesquin, M. Bruschi, W. Nitschke, Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c(4). J Biol Chem. 274 (1999) 30365–30369.
DOI: 10.1074/jbc.274.43.30365
Google Scholar
[5]
J. Castresana, M. Lübben, M. Saraste, New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol. 250 (1995) 202-210.
DOI: 10.1006/jmbi.1995.0371
Google Scholar
[6]
Komorowski, L., Schäfer, G. 2001. Sulfocyanin and subunit II, two copper proteins with novel features, provide new insight into the archaeal SoxM oxidase supercomplex. FEBS Lett. 487: 351-355.
DOI: 10.1016/s0014-5793(00)02343-7
Google Scholar
[7]
A.P. Yelton, L.R. Comolli, N.B. Justice, C. Castelle, V.J. Denef, B.C. Thomas, J.F. Banfield, Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics. 14(2013).
DOI: 10.1186/1471-2164-14-485
Google Scholar
[8]
C. Castelle, M. Guiral, G. Malarte, F. Ledgham, G. Leroy, M. Brugna, M. -T. Giudici-Orticoni, A new iron-oxidizing/O-2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem. 283 (2008).
DOI: 10.1074/jbc.m802496200
Google Scholar
[9]
M. Dopson, C. Baker-Austin, P.L. Bond, Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology. 151 (2005) 4127-4137.
DOI: 10.1099/mic.0.28362-0
Google Scholar
[10]
E.E. Allen, G.W. Tyson, R.J. Whitaker, J.C. Detter, P.M. Richardson, J.F. Banfield, Genome dynamics in a natural archaeal population. Proc Natl Acad Sci USA. 104 (2007) 1883-1888.
DOI: 10.1073/pnas.0604851104
Google Scholar
[11]
M.V. Botuyan, A. Toy-Palmer, J. Chung, R.C. 2nd Blake, P. Beroza, D.A. Case, H,J. Dyson,. NMR solution structure of Cu(I) rusticyanin from Thiobacillus ferrooxidans: structural basis for the extreme acid stability and redox potential. J Mol Biol. 263 (1996).
DOI: 10.1006/jmbi.1996.0613
Google Scholar
[12]
X. Guo, H. Yin, Y. Liang, Q. Hu, X. Zhou, Y. Xiao, L. Ma, X. Zhang, G. Qiu, X. Liu, Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST. PLoS One. 9 (2014).
DOI: 10.1371/journal.pone.0099417
Google Scholar
[13]
T.I. Bogdanova, I.A. Tsaplina, T.F. Kondrat'eva, V.I. Duda, N.E. Suzina, V.S. Melamud, T.P. Tourova, G.I. Karavaiko, Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol. 56 (2006).
DOI: 10.1099/ijs.0.64106-0
Google Scholar
[14]
N. Okibe, M. Gericke, K.B. Hallberg, D.B. Johnson, Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol. 69 (2003) 1936-(1943).
DOI: 10.1128/aem.69.4.1936-1943.2003
Google Scholar
[15]
S. Marín, M. Acosta, P. Galleguillos, C. Chibwana, H. Strauss, C. Demergasso, Insights into the active carbon fixation pathways of a microbial community in a chalcopyrite bioleaching column. 2015 This issue.
DOI: 10.4028/www.scientific.net/amr.1130.367
Google Scholar
[16]
C. Salazar, M. Acosta, P. Galleguillos, A. Shmaryahu, R. Quatrini, D.S. Holmes, C. Demergasso, Analysis of gene expression in response to copper stress in Acidithiobacillus ferrooxidans strain D2, isolated from a copper bioleaching operation. Advanced Materials Research, 825 (2013).
DOI: 10.4028/www.scientific.net/amr.825.157
Google Scholar
[17]
N. Guex, M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18 (1997) 2714-2723.
DOI: 10.1002/elps.1150181505
Google Scholar
[18]
R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (2004) 1792-1797.
DOI: 10.1093/nar/gkh340
Google Scholar
[19]
Information on: http: /toolkit. tuebingen. mpg. de/ali2d.
Google Scholar
[20]
L.G. Ryden, L.T. Hunt, Evolution of protein complexity: The blue-copper containing oxidases and related proteins. J Mol Evol. 36 (1993) 41-66.
DOI: 10.1007/bf02407305
Google Scholar
[21]
M.G. Savelieff, T.D. Wilson, Y. Elias, M.J. Nilges, D.K. Garner, Y. Lu, Experimental evidence for a link among cupredoxins: red, blue, and purple copper transformations in nitrous oxide reductase. Proc Natl Acad Sci U S A. 105 (2008)7919-7924.
DOI: 10.1073/pnas.0711316105
Google Scholar