Reductive Dissolution of Iron Oxides and Manganese Bioleaching by Acidiphilium cryptum JF-5

Article Preview

Abstract:

In the development of new processes to use the potential of iron reducing bacteria, Acidiphilium cryptum, the main bacteria involved in the reduction of Fe (III) compounds in acidic environments, could play an important biohydrometallurgical role. Thus, the bioleaching of hematite, goethite and a low-grade manganese ore was assayed, in vials and columns, using three different media; two of which included a ligand, oxalate, or a redox mediator, thionine.Although the presence of A. cryptum was essential for promoting the dissolution of both iron oxides and the bioleaching of manganese ore, the addition of oxalate to the media tripled and quadrupled the microbial dissolution of hematite and goethite, respectively. Oxalate also had a positive effect in assays performed in columns, however, the addition of thionine to the medium allowed to reach significant hematite dissolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

347-350

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.C. Eisele and K.L. Gabby: Mineral Processing and Extractive Metallurgy Review Vol. 35 (2014), pp.75-105.

DOI: 10.1080/08827508.2012.703627

Google Scholar

[2] C.A. du Plessis, W. Slabbert, K.B. Hallberg, and D.B. Johnson: Hydrometallurgy Vol. 109 (2011), pp.221-229.

DOI: 10.1016/j.hydromet.2011.07.005

Google Scholar

[3] H. Dong, J.K. Fredrickson, D.W. Kennedy, J.M. Zachara, R.K. Kukkadapu, and T.C. Onstott: Chemical Geology Vol. 169 (2000), pp.299-318.

DOI: 10.1016/s0009-2541(00)00210-2

Google Scholar

[4] J.A. Gralnick and D.K. Newman: Molecular Microbiology Vol. 65 (2007), pp.1-11.

Google Scholar

[5] DSMZ. 269. Acidiphilium medium. 2007 [cited 2015; Available from: http: /www. dsmz. de/microorganisms/medium/pdf/DSMZ_Medium269. pdf.

Google Scholar

[6] L.L. Stookey: Analytical Chemistry Vol. 42 (1970), pp.779-781.

Google Scholar

[7] T.A.M. Bridge and D.B. Johnson: Geomicrobiology Journal Vol. 17 (2000), pp.193-206.

Google Scholar

[8] O. Larsen and D. Postma: Geochimica et Cosmochimica Acta Vol. 65 (2001), pp.1367-1379.

DOI: 10.1016/s0016-7037(00)00623-2

Google Scholar

[9] S. Bonneville, T. Behrends, and P. Van Cappellen: Geochimica et Cosmochimica Acta Vol. 73 (2009), pp.5273-5282.

DOI: 10.1016/j.gca.2009.06.006

Google Scholar

[10] T. Fenchel, G.M. King, and T.H. Blackburn, in: Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, edited by T. Fenchel, G.M. King, and T.H. Blackburn/Academic Press, Boston (2012), pp.1-34.

DOI: 10.1016/b978-0-12-415836-8.00001-3

Google Scholar

[11] D.R. Lovley, D.E. Holmes, and K.P. Nevin, in: Advances in Microbial Physiology/Academic Press (2004), pp.219-286.

Google Scholar

[12] K. Küsel, T. Dorsch, G. Acker, and E. Stackebrandt: Applied and Environmental Microbiology Vol. 65 (1999), pp.3633-3640.

Google Scholar

[13] W. Zhang and C.Y. Cheng: Hydrometallurgy Vol. 89 (2007), pp.137-159.

Google Scholar

[14] U. Schröder: Physical Chemistry Chemical Physics Vol. 9 (2007), pp.2619-2629.

Google Scholar

[15] D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos: Hydrometallurgy Vol. 42 (1996), pp.257-265.

DOI: 10.1016/0304-386x(95)00104-o

Google Scholar

[16] R.M. Cornell and U. Schwertmann, in: The Iron Oxides. Structure, Properties, Reactions, Occurences and Uses, edited by R.M. Cornell and U. Schwertmann/Wiley-VCH (2003), pp.201-220.

DOI: 10.1002/3527602097

Google Scholar

[17] A. Borole, H. O'Neill, C. Tsouris, and S. Cesar: Biotechnology Letters Vol. 30 (2008), pp.1367-1372.

Google Scholar