Chalcopyrite Bioleaching at High Sulfate Concentrations

Article Preview

Abstract:

The efficiency of chalcopyrite bioleaching in a high sulfate background was evaluated using acidophilic microorganisms adapted to sulfate. The concentration of magnesium sulfate added to mesophilic, moderately thermophilic and thermophilic bioleaching tests was equivalent to 100, 40 and 80 g L-1 SO42-, respectively. Biological copper extraction was highest at 45 °C (67 %), followed by 60 °C (54 %) and 30 °C (16 %). Quantitative x-ray diffraction (QXRD) analysis of the ROM ore and bioleached residues revealed the complete disappearance of pyrrhotite and a significant reduction of pyrite at all temperatures. Significant chalcopyrite was leached at 45 and 60 °C; however, no chalcopyrite was leached at 30 °C. As the bioleach did not plateau after 31 days, it is possible that higher copper yields may have been achieved with prolonged leaching.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-399

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Rea, N.J. McSweeney, B.P. Degens, C. Morris, H.M. Siebert, A.H. Kaksonen: Min Eng 75 (2105), p.126.

Google Scholar

[2] C.S. Gahan, J.E. Sundkvist, M. Dopson, Å. Sandström: Biotechnol. Biooeng. 106 (2010), p.422.

Google Scholar

[3] C.A. du Plessis, J.D. Batty, D.W. Dew, in Biomining, edited by D.E. Rawlings and B.D. Johnson. Springer-Verlag, Berlin, Heidelberg (2007) p.57.

Google Scholar

[4] D.W. Shiers, K.R. Blight, D.E. Ralph, D. E: Hydrometallurgy 80 (2005), p.75.

Google Scholar

[5] K.R. Blight, D. E Ralph: Hydrometallurgy 73 (2004), p.325.

Google Scholar

[6] H.R. Watling, E.J. Watkin, D.E. Ralph: Environ. Technol. 31 (8-9), (2010), p.915.

Google Scholar

[7] F.M. Adaos: oral presentation at the IBS (2013), Antofagasta, Chile.

Google Scholar

[8] 3500-Fe: APHA, Washington, DC (1992), p.1100.

Google Scholar

[9] L. Harahuc, H. M. Lizama, I. Suzuki: Appl. Environ. Microbiol. 66(3) (2000), p.1031.

Google Scholar

[10] H-m Li, J-j Ke. Hydromet. 61 (2001), pp.151-156.

Google Scholar

[11] T.V. Ojumu, J. Petersen, G. S. Hansford: Hydromet. 97 (2008), p.69.

Google Scholar

[12] I. Suzuki, D. Lee, B. MacKay, L. Harahuc, J. K. Oh: Appl. Environ. Microbiol. 65 (1999), p.5163.

Google Scholar

[13] Y. Rodríguez, A. Ballester, M. L. Bláquez, F. González, J. A. Muñoz: Hydromet. 71 (2003), p.47.

Google Scholar

[14] H R. Watling: Hydromet. 84 (2006), p.81.

Google Scholar

[15] J. Vilcáez, K. Suto, C. Inoue: Int. J. Min. Proc. 88(1-2) (2008), p.37.

Google Scholar

[16] N. Pradhan, K.C. Nathsarma, K. Srinivasa Rao, L.B. Sukla, B.K. Mishra. Min. Eng. 21 (2008), p.355.

Google Scholar