Study of Two Facile Methods for Preparation of Titanium Dioxide/Graphene Nanocomposite for DSSC’s Photoanode

Article Preview

Abstract:

Titanium dioxide (TiO2) is a well-known promising photocatalyst that has been used as the photoanode in dye sensitized solar cells (DSSC). Since graphene has good electrical, mechanical and chemical properties, its use is supposed to enhance the photocatalytic activity of TiO2, the absorption of dye and enhance the mechanical strength of the layers of DSSC. There are several methods of preparing TiO2/graphene composite using complicated process and high-tech instruments. In this study, TiO2/graphene nanocomposite was prepared using two facile methods, which is achieved by mixing graphene oxide (GO) sheets with commercially available TiO2 paste and the other method was based on thermal reaction of mixed TiO2 and GO before incorporating it to the working electrode of DSSC. The quality of GO reduction in the process of making the composite was characterized by using FTIR spectra and Raman spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-27

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. H. Kim, B. -H. Kim, K. S. Yang, Carbon 50 (7) (2012) 2472-2481.

Google Scholar

[2] S.E. Mahdavi, B.S.M. Singh, N.M. Mohamed, AIP Conference Proceedings 1621 (2014) 543-548.

Google Scholar

[3] T.H. Tsai, S. -C. Chiou, S. -M. Chen, Int. J. Electrochem. Sci 6 (2011) 3333-3343.

Google Scholar

[4] B. Tang, G. Hu, Journal of Power Sources 220 (2012) 95-102.

Google Scholar

[5] N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS nano 4 (2) (2010) 887-894.

Google Scholar

[6] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer, The Journal of Physical Chemistry B 107 (19) (2003) 4545-4549.

DOI: 10.1021/jp0273934

Google Scholar

[7] R. Leary, A. Westwood, Carbon 49 (3) (2011) 741-772.

Google Scholar

[8] X. Liu, L. Pan, T. Lv, G. Zhu, T. Lu, Z. Sun, C. Sun, RSC Advances 1 (7) (2011) 1245.

Google Scholar

[9] W. Low, V. Boonamnuayvitaya, Materials Research Bulletin 48 (8) (2013) 2809-2816.

Google Scholar

[10] S. Morales-Torres, L. M. Pastrana-Martinez, J. L. Figueiredo, J. L. Faria, A. M. Silva, Environmental science and pollution research international 19 (9) (2012) 3676-3687.

DOI: 10.1007/s11356-012-0939-4

Google Scholar

[11] Y. Zhang, C. Pan, Journal of Materials Science 46 (8) (2010) 2622-2626.

Google Scholar

[12] P. Muthirulan, C. N. Devi, M. M. Sundaram, Ceramics International, Article in press (2013).

Google Scholar

[13] Y. Gao, X. Pu, D. Zhang, G. Ding, X. Shao, J. Ma, Carbon 50 (11) (2012) 4093-4101.

Google Scholar

[14] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, Progress in Materials Science 56 (8) (2011) 1178-1271.

DOI: 10.1016/j.pmatsci.2011.03.003

Google Scholar

[15] Z. Peining, A. S. Nair, P. Shengjie, Y. Shengyuan, S. Ramakrishna, ACS applied materials & interfaces 4 (2) (2012) 581-585.

Google Scholar

[16] M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li, M. Ye, Colloids and Surfaces A: Physicochemical and Engineering Aspects 405 (2012) 30-37.

DOI: 10.1016/j.colsurfa.2012.04.031

Google Scholar