Effects of Soaking Duration on the Properties of LSCF–SDCC for Low-Temperature SOFC

Article Preview

Abstract:

Solid oxide fuel cells (SOFCs) offer the advantages of high efficiency, low pollution emission, and low processing cost. SOFC quality is strongly influenced by the preparation process. Composite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) samarium-doped ceria carbonate (SDCC) cathode for low-temperature SOFCs was developed, and the effect of sintering soaking time on the physical properties of an LSCF–SDCC composite cathode was studied. Composite cathode powders with 50 wt.% LSCF and 50 wt.% SDCC were mixed before undergoing calcination and uniaxial pressing process. The pressed samples were sintered at 600 °C and soaked at 1, 2, and 3 hr. The porosity and density results obtained by the Archimedes method showed a decrement of porosity from 24.92% to 19.62% and an increment of density from 4.03 g cm−1 to 4.15 g cm1 under 1 hr to 3 hr of soaking time. Scanning electron microscopy reveals that the grain size of the composite cathode surface increases with increasing soaking time. X-ray diffraction results demonstrate that the diffraction angles at 33o and 59o exhibit a decreasing SDCC peak because of the increasing grain size. However, the new peak of lithium chromium oxide (Li2CrO4) appears at an angle of 21.66° for 3 hr soaking time. The findings proved that soaking time influences the microstructure of the composite cathode.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-32

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Chen, S. Gao, H. Zhang, Performance analysis and multi-objective optimization of an irreversible solid oxide fuel cell-stirling heat engine hybrid system, Int. J. Electrochemical Sci. 8 (2013) 10772.

DOI: 10.1016/s1452-3981(23)13147-6

Google Scholar

[2] J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, Effect of low temperature in-situ sintering on the impedace and the performance of intemediate temperature solid oxide fuel cell cathodes, J. Power Sources. 245 (2014) 418.

DOI: 10.1016/j.jpowsour.2013.06.067

Google Scholar

[3] H.A. Rahman, A. Muchtar, N. Muhamad, H. Abdullah, La0. 6Sr0. 4Co0. 8O3-δ-SDC carbonate composite cathode for low temperature solid oxide fuel cells, Mat. Chemistry and Physics. 141 (2013) 752.

DOI: 10.1016/j.matchemphys.2013.05.071

Google Scholar

[4] F. Meng, T. Xia, J. Wang, Z. Shi, J. Lian, H. Zhao, J. -C. Grenier, Evaluation of layered perovskites YBa1-xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy 39 (2014) 4531.

DOI: 10.1016/j.ijhydene.2014.01.008

Google Scholar

[5] L. Agun, H.A. Rahman, S. Ahmad, A. Muchtar, Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC), Trans Tech Publications, (2014).

DOI: 10.4028/www.scientific.net/amr.893.732

Google Scholar

[6] S.A. Muhammed Ali, A. Muchtar, A. Bakar Sulong, N. Muhamad, E. Herianto Majlan, Influence of sintering temperature on the powder densiti of samarium-doped-ceria carbonate electrolyte composites for low temperature solid oxide fuel cells, Ceramics Int. 5813 (2013).

DOI: 10.1016/j.ceramint.2013.01.002

Google Scholar

[7] M. Ghouse, Y. Al-Yousef, A. Al-Musa, M.F. Al-Otaibi, Preparation of La0. 6Sr0. 4Co0. 2Fe0. 8O3 nanoceramic cathode powders for solid oxide fuel cell (SOCF) application, Int. J. Hydrogen Energy 9411–9419 (2010) 35.

DOI: 10.1016/j.ijhydene.2010.04.144

Google Scholar

[8] H. A, Rahman, A. Muchtar, N. Muhamad, H. Abdullah, Structure and thermal proporties of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ-SDC carbonate composite cathods for intermediate-to low-temperature solid oxide fuel cells, Ceramics Int. 38 (2012) 1571.

DOI: 10.1016/j.ceramint.2011.09.043

Google Scholar

[9] V. Singh, S. Babu, A.S. Karakoti, A. Agarwal, S. Seal, Effect of submicron grains on ionic conductivity of nanocrystalline doped ceria, J. Nanoscience and Nanotechnology 10 (2010) 6495.

DOI: 10.1166/jnn.2010.2523

Google Scholar

[10] R.V. Mangalaraja, S. Ananthakumar, A. Schachtsiek, M. López, C.P. Camurri, R.E. Avila, Synthesis and mechanical properties of low temperature sintered Sm3+ doped nanoceria electrolyte membranes for IT-SOCF applications, Mater. Sci. & Eng. A. 527 (2010).

DOI: 10.1016/j.msea.2010.01.025

Google Scholar

[11] X. Sha, Z. Lü, X. Huang, J. Miao, L. Jia, X. Xin, W. Su, Preparation and properties of rare earth co-doped Ce0. 8Sm0. 2-xYxO1. 9 electrolyte materials for SOCF, J. Alloys and Compounds 424 (2006) 315.

DOI: 10.1016/j.jallcom.2005.12.061

Google Scholar

[12] K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, K.N. Ganesha, Studies on structural, morphological and electrical properties prepared by citrate complexation method, J. Alloys and Compounds 585 (2014) 594.

DOI: 10.1016/j.jallcom.2013.09.101

Google Scholar

[13] J. Raharjo, A. Muchtar, W. Ramli, W. Daud, N. Muhamad, E. Herianto, Porous NiO-SDC carbonates composite anode for LT-SOFC applications produced by pressureless sintering, Trans Tech Publications, (2011).

DOI: 10.4028/www.scientific.net/amm.52-54.488

Google Scholar

[14] Y. Liu, F. Wang, B. Chi, J. Pu, L. Jian, S.P. Jiang, A stability studyof impregnated LSCF-GDC composite cathodes of solid oxide fuel cells, J. Alloys and Compounds 578 (2013) 37.

DOI: 10.1016/j.jallcom.2013.05.021

Google Scholar

[15] L. Da Conceição, A.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Combustion synthesis of La0. 7Sr0. 3Co0. 5Fe0. 5O3 (LSCF) porous materials for application ascathode in IT-SOFC Mat. Res. Bulletin 46 (2011) 308.

DOI: 10.1016/j.materresbull.2010.10.009

Google Scholar