[1]
L. Petrini and F. Migliavacca, Biomedical Applications of Shape Memory Alloys, J. of Metallurgy, vol. 2011, no. Figure 1, p.1–15.
Google Scholar
[2]
M. H. Ismail, Porous NiTi alloy by metal injection moulding (MIM) using partly water soluble binder system, Thesis University of Sheffield, (2012).
Google Scholar
[3]
Frenzel, J., George, E. P., Dlouhy, A., Somsen, Ch, Wagner, M. F. X, Eggeler, G. (2010). Influence of Ni on martensitic phase transformations in NiTi shape memory alloys Acta Materialia 58(9): 3444-3458.
DOI: 10.1016/j.actamat.2010.02.019
Google Scholar
[4]
Mentz, J., Bram, M., Buchkremer, H. P. Stöver, D. (2006a), Improvement of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloy, Adv. Engineering Materials 8(4): 247-251.
DOI: 10.1002/adem.200500258
Google Scholar
[5]
M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, Manufacturing and processing of NiTi implants: A review Progress in Materials Science, vol. 57, no. 5, p.911–946, Jun. (2012).
DOI: 10.1016/j.pmatsci.2011.11.001
Google Scholar
[6]
M. H. Ismail, Formation of microporous NiTi by transient liquid phase sintering of elemental powders Mater. Science and Engineering C 32 (2012) 1480–1485.
DOI: 10.1016/j.msec.2012.04.028
Google Scholar
[7]
Krone, L., Schüller, E., Bram, M., Hamed, O., Buchkremer, H. P. Stöver, D. (2004). Mechanical behaviour of NiTi parts prepared by powder metallurgical methods Materials Science and Engineering A 378(1-2): 185-190.
DOI: 10.1016/j.msea.2003.10.345
Google Scholar
[8]
Zhu, S. L., Yang, X. J., Fu, D. H., Zhang, L. Y., Li, C. Y. , Cui, Z. D. (2005). Stress-strain behavior of porous NiTi alloys prepared by powders sintering Materials Science and Engineering: A 408(1-2): 264-268.
DOI: 10.1016/j.msea.2005.08.012
Google Scholar
[9]
Kaya, Mehmet, Orhan, Nuri , Tosun, Gül (2010).
Google Scholar
[10]
Bansiddhi, A., Sargeant, T. D., Stupp, S. I. Dunand, D. C. (2008a). Porous NiTi for bone implants: A review Acta Biomaterialia 4(4): 773-782.
DOI: 10.1016/j.actbio.2008.02.009
Google Scholar
[11]
Bansiddhi, A. Dunand, D. C. (2008b). Shape-memory NiTi foams produced by replication of NaCl space-holders Acta Biomaterialia 4(6): 1996-(2007).
DOI: 10.1016/j.actbio.2008.06.005
Google Scholar
[12]
Yuan, B., Chung, C. Y., Huang, P. Zhu, M. (2006a). Superelastic properties of porous TiNi shape memory alloys prepared by hot isostatic pressing Materials Science and Engineering: A 438-440: 657-660.
DOI: 10.1016/j.msea.2005.12.077
Google Scholar
[13]
Köhl, M., Bram, M., Buchkremer, H. P. Stöver, D. (2007a). Highly porous NiTi components produced by metal injection moulding in combination with the space holder method European Powder Metallurgy Association (EPMA). 2: 129 - 135.
Google Scholar
[14]
Whitney, M., Corbin, S. F. Gorbet, R. B. (2009). Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi " Intermetallics 17(11): 894-906.
DOI: 10.1016/j.intermet.2009.03.018
Google Scholar
[15]
Bertheville, Bernard (2006b) Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute Biomaterials 27(8): 1246-1250.
DOI: 10.1016/j.biomaterials.2005.09.014
Google Scholar
[16]
Laeng, Jamaluddin, Xiu, Zhimeng, Xu, Xiaoxue, Sun, Xudong, Ru, Hongquiang , Liu, Yinong Phase formation of Ni-Ti via solid state reaction Physica Scripta 2007(T129): 250-257.
DOI: 10.1088/0031-8949/2007/t129/056
Google Scholar
[17]
Li, D. S., Zhang, Y. P., Ma, X. Zhang, X. P. (2009aSpace-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties). 474(1-2): L1-L5.
DOI: 10.1016/j.jallcom.2008.06.043
Google Scholar
[18]
Li, 2000, An Investigation of the Synthesis of Ti-50 At. Pct Ni Alloys through Combustion Synthesis and Conventional Powder SinteringMetallurgical and Materials, A vol. 31A, JULY 2000—1871.
DOI: 10.1007/s11661-006-0242-4
Google Scholar
[19]
S.K. Sadrnezhaad *, S.A. Materials and Design 30 (2009) Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications4483–4487.
DOI: 10.1016/j.matdes.2009.05.034
Google Scholar
[20]
Aydogmus, Tarik , Bor, Sakir (2009). Processing of porous TiNi alloys using magnesium as space holder Journal of Alloys and Compounds 478(1-2): 705- 710.
DOI: 10.1016/j.jallcom.2008.11.141
Google Scholar
[21]
Chu, C. L., Chung, C. Y., Lin, P. H. Wang, S. D. (2004), Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis Materials Science and Engineering A 366(1): 114-119.
DOI: 10.1016/j.matlet.2003.10.045
Google Scholar
[22]
B. Y. Tay, C. W. Goh, M. S. Yong, A. M. Soutar, Q. Li, M. K. Ho, M. H. Myint, Y. W. Gu1 and C. S. Porous NiTi by sintering of elemental componentsSIMTech technical reports Volume 7 Number 1 Jan-Mar (2006).
Google Scholar
[23]
Wisutmethangoon, Sirikul, Denmud, Nipon , Sikong, Lek (2009). Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique Materials Science and Engineering: A 515(1-2): 93-97.
DOI: 10.1016/j.msea.2009.02.055
Google Scholar
[24]
Lagoudas, Dimitris C. Vandygriff, Eric L. (2002). Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering Journal of Intelligent Materials Systems and Structures 13: 837-850.
DOI: 10.1177/1045389x02013012009
Google Scholar
[25]
Oppenheimer, Scott M. Dunand, David C. (2009). Porous NiTi by creep expansion of argon-filled pores Materials Science and Engineering: A 523(1-2): 70 -76.
DOI: 10.1016/j.msea.2009.05.045
Google Scholar
[26]
Gang Chen a, Peng Cao, *, Guian Wen, Neil Edmonds, Yimin Li, Using an agar-based binder to produce porous NiTi alloys by metal injection moulding Intermetallics, (37), 2013 pg 92.
DOI: 10.1016/j.intermet.2013.02.006
Google Scholar