[1]
S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (6348) (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports. 49 (4) (2005) 89-112.
DOI: 10.1016/j.mser.2005.04.002
Google Scholar
[3]
A. Godara, T. Vaugien, Carbon nanotubes in polymer matrix composite structures, JEC Composites Magazine 48 (2009) 64-68.
Google Scholar
[4]
R.N. Othman, I.A. Kinloch, A.N. Wilkinson, Synthesis and characterisation of silica–carbon nanotube hybrid microparticles and their effect on the electrical properties of poly(vinyl alcohol) composites, Carbon. 60 (2013) 461-470.
DOI: 10.1016/j.carbon.2013.04.062
Google Scholar
[5]
H. Qian, A. Bismarck, E.S. Greenhalgh, G. Kalinka, M.S.P. Shaffer, Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level, Chem Mat. 20 (5) (2008) 1862-1869.
DOI: 10.1021/cm702782j
Google Scholar
[6]
S. Agrawal, A. Kumar, M.J. Frederick, G. Ramanath, Hybrid microstructures from aligned carbon nanotubes and silica particles, Small. 1 (8-9) (2005) 823-826.
DOI: 10.1002/smll.200500023
Google Scholar
[7]
D.L. He, M. Bozlar, M. Genestoux, J.B. Bai, Diameter and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles, Carbon. 48 (4) (2010) 1159-11570.
DOI: 10.1016/j.carbon.2009.11.039
Google Scholar
[8]
M. Bozlar, D.L. He, J.B. Bai, Y. Chalopin, N. Mingo, S. Volz, Carbon nanotube microarchitectures for enhanced thermal conduction at ultra low mass fraction in polymer composites, Adv Mater. 22 (14) (2010) 1654-1658.
DOI: 10.1002/adma.200901955
Google Scholar
[9]
C. Singh, M.S. Shaffer, A.H. Windle, Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon. 41(2) (2003) 359-368.
DOI: 10.1016/s0008-6223(02)00314-7
Google Scholar
[10]
X.H. Nguyen, Y.B. Lee, C.H. Lee, D.S. Lim, Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites, Carbon. 48 (10) (2010) 2910-2916.
DOI: 10.1016/j.carbon.2010.04.027
Google Scholar
[11]
D.L. He, J.B. Bai, Acetylene-enhanced growth of carbon nanotubes on ceramic microparticles for multi-scale hybrid structures, Chemical Vapor Deposition. 17 (4-6) (2011) 98-106.
DOI: 10.1002/cvde.201006878
Google Scholar
[12]
C.J. Lee, J. Park, Y. Huh, J.Y. Lee, Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chemical Physics Letters. 343 (1-2) (2001) 33-38.
DOI: 10.1016/s0009-2614(01)00680-7
Google Scholar
[13]
A. Jorio, M.A. Pimenta, A.G. Souza, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman Scattering, New J. Phys. 5 (2003) 139. 1-139. 17.
DOI: 10.1088/1367-2630/5/1/139
Google Scholar
[14]
M. Endo, Y.A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. Appl. Phys. Lett. 79 (10) (2001) 1531-1533.
DOI: 10.1063/1.1400774
Google Scholar