The Effects of Reaction Temperature on the Morphology and the Quality of the Carbon Nanotube - Silica Microparticles

Article Preview

Abstract:

Carbon nanotube has been successfully grafted on the surface of spherical silica gel via floating-catalyst chemical vapour deposition method. The growth conditions were set to be 3 hours growth time and 5 wt. % of ferrocene catalyst (dissolved in toluene) injected into the furnace at a rate of 0.04 ml/min. It was found that the reaction temperature of 760°C yields the best quality hybrid particles. Decreasing and increasing the reaction temperature resulted in the formation of product that consists of thicker tubes, higher defects as analysed by Raman, as well as least carbon formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-470

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (6348) (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Materials Science & Engineering R-Reports. 49 (4) (2005) 89-112.

DOI: 10.1016/j.mser.2005.04.002

Google Scholar

[3] A. Godara, T. Vaugien, Carbon nanotubes in polymer matrix composite structures, JEC Composites Magazine 48 (2009) 64-68.

Google Scholar

[4] R.N. Othman, I.A. Kinloch, A.N. Wilkinson, Synthesis and characterisation of silica–carbon nanotube hybrid microparticles and their effect on the electrical properties of poly(vinyl alcohol) composites, Carbon. 60 (2013) 461-470.

DOI: 10.1016/j.carbon.2013.04.062

Google Scholar

[5] H. Qian, A. Bismarck, E.S. Greenhalgh, G. Kalinka, M.S.P. Shaffer, Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level, Chem Mat. 20 (5) (2008) 1862-1869.

DOI: 10.1021/cm702782j

Google Scholar

[6] S. Agrawal, A. Kumar, M.J. Frederick, G. Ramanath, Hybrid microstructures from aligned carbon nanotubes and silica particles, Small. 1 (8-9) (2005) 823-826.

DOI: 10.1002/smll.200500023

Google Scholar

[7] D.L. He, M. Bozlar, M. Genestoux, J.B. Bai, Diameter and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles, Carbon. 48 (4) (2010) 1159-11570.

DOI: 10.1016/j.carbon.2009.11.039

Google Scholar

[8] M. Bozlar, D.L. He, J.B. Bai, Y. Chalopin, N. Mingo, S. Volz, Carbon nanotube microarchitectures for enhanced thermal conduction at ultra low mass fraction in polymer composites, Adv Mater. 22 (14) (2010) 1654-1658.

DOI: 10.1002/adma.200901955

Google Scholar

[9] C. Singh, M.S. Shaffer, A.H. Windle, Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon. 41(2) (2003) 359-368.

DOI: 10.1016/s0008-6223(02)00314-7

Google Scholar

[10] X.H. Nguyen, Y.B. Lee, C.H. Lee, D.S. Lim, Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites, Carbon. 48 (10) (2010) 2910-2916.

DOI: 10.1016/j.carbon.2010.04.027

Google Scholar

[11] D.L. He, J.B. Bai, Acetylene-enhanced growth of carbon nanotubes on ceramic microparticles for multi-scale hybrid structures, Chemical Vapor Deposition. 17 (4-6) (2011) 98-106.

DOI: 10.1002/cvde.201006878

Google Scholar

[12] C.J. Lee, J. Park, Y. Huh, J.Y. Lee, Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition, Chemical Physics Letters. 343 (1-2) (2001) 33-38.

DOI: 10.1016/s0009-2614(01)00680-7

Google Scholar

[13] A. Jorio, M.A. Pimenta, A.G. Souza, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman Scattering, New J. Phys. 5 (2003) 139. 1-139. 17.

DOI: 10.1088/1367-2630/5/1/139

Google Scholar

[14] M. Endo, Y.A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. Appl. Phys. Lett. 79 (10) (2001) 1531-1533.

DOI: 10.1063/1.1400774

Google Scholar