Fabrication of Ag/ZnO Nanoparticles Using Ascorbic Acid as Reducing Agent

Article Preview

Abstract:

High surface area Ag/ZnO with an average diameter of 13.95 nm was successfully synthesized through a facile route, using ascorbic acid and silica rice husk as reducing agent and amorphous support respectively. This nanomaterial was characterized by transmission electron microscopy, N2 adsorption-desorption, atomic absorption spectrometry and particle size analyzer. This simple method resulted in the production of almost spherical Ag/ZnO nanoparticles with high BET surface area and large pore volume of 341.46 m2g-1 and 0.59 cm3g-1 respectively. This preliminary study revealed the successful inclusion of metal cations into the silica framework without damaging the mesoporosity nature of silica.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-466

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Bhui, A. Misra, Synthesis of worm-like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity, Carbohydr. Polym. 89 (2012) 830-835.

DOI: 10.1016/j.carbpol.2012.04.017

Google Scholar

[2] J. Liu, H. Wang, S. Dong, F. Wang, Y. Dong, Effect of Ag shapes and surface compositions on the photocatalytic performance of Ag/ZnO nanorods, J. Alloy Compd. 617 (2014) 869-876.

DOI: 10.1016/j.jallcom.2014.08.096

Google Scholar

[3] M.D.L.R. Peralta, U. Pal, R.S. Zeferino, Photoluminsence (PL) quenching and enhanced photocatalytic activity Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis, Appl. Mater. Interface 4 (2012) 4807-4816.

DOI: 10.1021/am301155u

Google Scholar

[4] H. Chen, C.P. Chen, C. -T.R. Yu, Y.T. Chen, C. -C. Teng, K. -Y. Lo, C.H. Lin, B. -Y. Huang, Distint spatial profiles and antibacterial effects of 20 nm Ag nanoparticles dripped on ZnO nanorods grown on a polished Ti substrate, Appl. Surf. Sci. 311 (2014).

DOI: 10.1016/j.apsusc.2014.05.077

Google Scholar

[5] M. Mahanti, D. Basak, Enhanced photoluminscence in Ag@SiO2 core-shell nanoparticles coated ZnO nanorods, J. Lumin. 154 (2014) 535-540.

DOI: 10.1016/j.jlumin.2014.05.023

Google Scholar

[6] O.V. Kharissova, H.V. Rasika Dias, B.I. Kharisov, B.O. Perez, V.M. Jimenez-Perez, The greener synthesis of nanoparticles, Trends Biotechnol. 31 (2013) 240-248.

DOI: 10.1016/j.tibtech.2013.01.003

Google Scholar

[7] N. Mat Zain, A.G.F. Stapley, G. Shama, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications, Carbohydr. Polym. 112 (2014) 195-202.

DOI: 10.1016/j.carbpol.2014.05.081

Google Scholar

[8] S. Shankar, X. Teng, J. -W. Rhim, Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents, Carbohydr. Polym. 114 (2014) 484-492.

DOI: 10.1016/j.carbpol.2014.08.036

Google Scholar

[9] J. Andas, F. Adam, I. Ab. Rahman, Sol-gel derived mesoporous cobalt silica catalyst: Synthesis, characterization and its activity in the oxidation of phenol, Appl. Surf. Sci. 315 (2014) 154-162.

DOI: 10.1016/j.apsusc.2014.07.118

Google Scholar

[10] F. Adam, J. Andas, Amino benzoic acid modified silica-An improved catalyst for the mono-substituted product in the benzylation of toluene with benzyl chloride, J. Colloid Interf. Sci. 311 (2007) 135-143.

DOI: 10.1016/j.jcis.2007.02.083

Google Scholar

[11] F. Adam, J. Andas, I. Ab. Rahman, A study on the oxidation of phenol by heterogeneous iron silica catalyst, Chem. Eng. J. 165 (2010) 658-667.

DOI: 10.1016/j.cej.2010.09.054

Google Scholar

[12] M. Faizal, H. Bouzid, F.A. Harraz, A.A. Ismail, S.A. Al-Sayari, M.S. Al-Assiri, Mesoporous Ag/ZnO multilayer films prepared by repeated spin-coating for enhancing its photonic efficiencies, Surf. Coat. Tech. 263 (2015) 44-53.

DOI: 10.1016/j.surfcoat.2014.12.063

Google Scholar

[13] J. Andas, F. Adam, I. Ab. Rahman, Heterogeneous copper-silica catalyst from agricultural biomass and its catalytic activity, Appl. Surf. Sci. 284 (2013) 503-513.

DOI: 10.1016/j.apsusc.2013.07.125

Google Scholar

[14] A.E. Ahmed, F. Adam, Indium incorporated silica from rice husk and its catalytic activity, Micropor. Mesopor. Mater. 103 (2007) 284-295.

DOI: 10.1016/j.micromeso.2007.01.055

Google Scholar