[1]
M. Ansar, W. Xinwei, and Z. Chouwei, Modeling strategies of 3D woven composites: A review, Composite Structures, vol. 93, pp.1947-1963, (2011).
DOI: 10.1016/j.compstruct.2011.03.010
Google Scholar
[2]
C. Wang, Z. Lu, and L. Jin, A review on the mechanical performance and fatigue behavior of 3-D angle-interlock woven composites, The Journal of The Textile Institute, pp.1-9, (2015).
DOI: 10.1080/00405000.2014.998872
Google Scholar
[3]
P. J. Callus, A. P. Mouritz, M. K. Bannister, and K. H. Leong, Tensile properties and failure mechanisms of 3D woven GRP composites, Composites: Part A Applied Science and Manufacturing, vol. 30 (1999) 1277–1287, pp.1277-1287, (1999).
DOI: 10.1016/s1359-835x(99)00033-0
Google Scholar
[4]
M. F. Yahya, S. A. Ghani, and J. Salleh, Modeling Plain Woven Composite Model with Isotropic Behavior, in Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014), 2014, p.19.
DOI: 10.1007/978-981-287-011-7_4
Google Scholar
[5]
M. Ansar, W. Xinwei, and Z. Chuwei, Generic Geometric Model for 3D Woven Interlock Composites, Advanced Materials Research, vol. 399-401, pp.478-485, (2011).
DOI: 10.4028/www.scientific.net/amr.399-401.478
Google Scholar
[6]
A. P. Mouritz, B. M.K., P. J. Falzon, and K. H. Leong, Review of applications for advanced three-dimensional fibre textile composites, Composites: Part A, vol. 30, pp.1445-1461, (1999).
DOI: 10.1016/s1359-835x(99)00034-2
Google Scholar
[7]
S. Dai, P. Cunningham, S. Marshall, and C. Silva, Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites, Composites: Part A, vol. 69, p.195–207, (2015).
DOI: 10.1016/j.compositesa.2014.11.012
Google Scholar
[8]
B. K. Behera and B. P. Dash, Mechanical behavior of 3D woven composites, Materials & Design, (2014).
Google Scholar
[9]
X. Zeng, L. P. Brown, A. Endruweit, M. Matveev, and A. C. Long, Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties, Composites: Part A, vol. 56, pp.150-160, (2014).
DOI: 10.1016/j.compositesa.2013.10.004
Google Scholar
[10]
Y. Mahadik and S. R. Hallett, Finite element modelling of tow geometry in 3D woven fabrics, Composites: Part A, vol. 41, pp.1192-1200, (2010).
DOI: 10.1016/j.compositesa.2010.05.001
Google Scholar
[11]
H. Gu and Z. Zhili, Tensile behavior of 3D woven composites by using different fabric structure, Materials and Design, vol. 23 (2002) 671–674, pp.671-674, (2002).
DOI: 10.1016/s0261-3069(02)00053-5
Google Scholar
[12]
B. K. Behera and B. P. Dash, An Experimental Investigation into the Mechanical Behaviour of 3D Woven Fabrics for Structural Composites, Fibers and Polymers 2014, vol. 15, pp.1950-1955, (2013).
DOI: 10.1007/s12221-014-1950-9
Google Scholar
[13]
B. K. Behera and R. Mishra, 3D weaving, Indian Journal of FIbre & Textile Research, vol. 33, pp.274-287, (2008).
Google Scholar
[14]
M.H. Peerzada, S. A. Abbasi, and A. Khatri, Effect of Weave Structure on Tensile Strength and Yarn Crimp of Three-Dimensional Fabric, Science Institute Lahore, vol. Sci. Int. (Lahore), 48 24(1), 47-50, 2012, pp.47-50, (2012).
Google Scholar
[15]
M. H. Mohamed and A. E. Bogdanovich, Comparative Analysis Of Different 3d Weaving Processes, Machines And Products, in In Proceedings of the 17th International Conference on Composite Materials (ICCM-17), (2009).
Google Scholar
[16]
A. R. Labanieh, X. Legrand, V. Koncar, and D. Soulat, Evaluation Of The Elastic Behavior Of Multiaxis 3d-Woven Preforms By Numerical Approach, Journal of Composite Materials, vol. 48, (2014).
DOI: 10.1177/0021998313508800
Google Scholar
[17]
J. S. Jones, D. L. Polis, R. R. Rowles, and K. N. Segal, Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures, (2011).
Google Scholar
[18]
S. V. Lomov, A. E. Bogdanovich, D. S. Ivanov, D. Mungalov, M. Karahan, and I. Verpoest, A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results, Composites: Part A, vol. 40, pp.1134-1143, (2009).
DOI: 10.1016/j.compositesa.2009.03.012
Google Scholar
[19]
S. L. Valença, S. Griza, V. G. de Oliveira, E. M. Sussuchi, and F. G. C. de Cunha, Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric, Composites: Part B, vol. 70, pp.1-8, (2015).
DOI: 10.1016/j.compositesb.2014.09.040
Google Scholar
[20]
H. Ullah, A. R. Harland, and V. V. Silberschmidt, Characterisation of mechanical behaviour and damage analysis of 2D woven composites under bending, Composites Part B, vol. 75, pp.156-165, (2015).
DOI: 10.1016/j.compositesb.2015.01.036
Google Scholar
[21]
B. Zahid and X. Chen, Properties of 5-layer angle-interlock Kevlar-based composite structure manufactured from vacuum bagging, Journal of Composite Materials, vol. 47, pp.3227-3234, (2012).
DOI: 10.1177/0021998312463457
Google Scholar
[22]
H. Gu, Tensile and Bending Behaviours of Laminates with Various Fabric Orientations, Materials & Design, vol. 27, pp.1086-1089, (2006).
DOI: 10.1016/j.matdes.2005.03.012
Google Scholar
[23]
Y. Mahadik and S. R. Hallett, Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties, Composites: Part A, vol. 42, p.1592–1600, (2011).
DOI: 10.1016/j.compositesa.2011.07.006
Google Scholar
[24]
F. Stig and S. Hallström, Influence of crimp on 3D-woven fibre reinforced composites, Composite Structures 9, vol. 95, pp.114-122, (2013).
DOI: 10.1016/j.compstruct.2012.07.022
Google Scholar
[25]
L. Tong, A. P. Mouritz, and M. K. Bannister, 3D Fibre Reinforced Polymer Composites: Elsevier, (2002).
DOI: 10.1016/b978-008043938-9/50012-0
Google Scholar
[26]
F. Stig, An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composites, Licentiate Thesis, Department of Aeronautical and Vehicle Engineering, School of Engineering Sciences, Kungliga Tekniska högskolan (KTH), Stockholm, Sweden, (2009).
Google Scholar
[27]
Y. Mahadik, K. A. R. Brown, and S. R. Hallett, Characterisation of 3D woven composite internal architecture and effect of compaction, Composites Part A: Applied Science and Manufacturing, vol. 41, pp.872-880, (2010).
DOI: 10.1016/j.compositesa.2010.02.019
Google Scholar
[28]
M. P. Saiman, M. S. Wahab, and M. U. Wahit, The Effect of Fabric Weave on Tensile Strength of Woven Kenaf Reinforced Unsaturated Polyester Composite, International Colloquium on Textile Engineering, Fashion, Apparel & Design 2014, (2014).
DOI: 10.1007/978-981-287-011-7_5
Google Scholar
[29]
S. Kari, M. Kumar, I. A. Jones, N. A. Warrior, and A. C. Long, Effect Of Yarn Cross-Sectional Shapes And Crimp On The Mechanical Properties Of 3d Woven Composites, Proceedings of the 17th IFAC World Congress, 2008, pp.1-10, (2008).
Google Scholar
[30]
M.P. Saiman, M. S Wahab, and M. U. Wahit, The Effect of Yarn Linear Density on Mechanical Properties of Plain Woven Kenaf Reinforced Unsaturated Polyester Composite, Applied Mechanics and Materials, vol. 465 - 466, pp.962-966, (2014).
DOI: 10.4028/www.scientific.net/amm.465-466.962
Google Scholar
[31]
M. Kılıç and A. Okur, Relationships Between Yarn Diameter / Diameter Variation and Strength, FIBRES & TEXTILES in Eastern Europe, vol. 14, pp.84-87, (2006).
Google Scholar
[32]
E. Mader, J. Rausch, and N. Schmidt, Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites, Composite Part A, vol. 39, p.612–623, (2008).
DOI: 10.1016/j.compositesa.2007.07.011
Google Scholar
[33]
J. -E. Rocher, S. Allaoui, G. Hivet, and E. Blond, Experimental characterization of the tensile behavior of a polypropylene/glass 3D-fabric: from the yarn to the fabric, presented at the 4th World Conference on 3D Fabrics and their Applications, Germany, (2012).
Google Scholar
[34]
N. K. Naik and R. Kuchibhotla, Analytical Study of Strength and Failure Behaviour of Plain Weave Fabric Composite Made of Twisted Yarn, Composite Part A, vol. 33, pp.697-708, (2002).
DOI: 10.1016/s1359-835x(02)00012-x
Google Scholar
[35]
Y. Wang and D. Zhao, Effect Fabric Structures on Mechanical Properties of 3D Textile Composite, Journal of Industrial Textiles, vol. 35, pp.239-256, (2006).
DOI: 10.1177/1528083706057595
Google Scholar