Factors Affecting Tensile Performance of 2D & 3D Angle Interlock Woven Fabric Composite: A Review

Article Preview

Abstract:

In recent years, textile composite are widely utilized as structural components in the area of aerospace, civil engineering, protective armour and automotive applications. Textiles structures become increasingly significant for composites application due to strength to weight factor. [1-4]. Various textile materials are extensively used such as fibres, yarns and fabrics. Commonly, textile composite structures are characterized according to the textile preform architecture either it is a conventional 2D laminated structure or 3D textile structural laminated composite [2]. Comparative studies between both types have suggested that 3D textile structure exhibit superior mechanical performance in tensile strength, impact resistance, flexural, delamination resistance, high fracture tolerance [1, 5, 6].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-153

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ansar, W. Xinwei, and Z. Chouwei, Modeling strategies of 3D woven composites: A review, Composite Structures, vol. 93, pp.1947-1963, (2011).

DOI: 10.1016/j.compstruct.2011.03.010

Google Scholar

[2] C. Wang, Z. Lu, and L. Jin, A review on the mechanical performance and fatigue behavior of 3-D angle-interlock woven composites, The Journal of The Textile Institute, pp.1-9, (2015).

DOI: 10.1080/00405000.2014.998872

Google Scholar

[3] P. J. Callus, A. P. Mouritz, M. K. Bannister, and K. H. Leong, Tensile properties and failure mechanisms of 3D woven GRP composites, Composites: Part A Applied Science and Manufacturing, vol. 30 (1999) 1277–1287, pp.1277-1287, (1999).

DOI: 10.1016/s1359-835x(99)00033-0

Google Scholar

[4] M. F. Yahya, S. A. Ghani, and J. Salleh, Modeling Plain Woven Composite Model with Isotropic Behavior, in Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014), 2014, p.19.

DOI: 10.1007/978-981-287-011-7_4

Google Scholar

[5] M. Ansar, W. Xinwei, and Z. Chuwei, Generic Geometric Model for 3D Woven Interlock Composites, Advanced Materials Research, vol. 399-401, pp.478-485, (2011).

DOI: 10.4028/www.scientific.net/amr.399-401.478

Google Scholar

[6] A. P. Mouritz, B. M.K., P. J. Falzon, and K. H. Leong, Review of applications for advanced three-dimensional fibre textile composites, Composites: Part A, vol. 30, pp.1445-1461, (1999).

DOI: 10.1016/s1359-835x(99)00034-2

Google Scholar

[7] S. Dai, P. Cunningham, S. Marshall, and C. Silva, Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites, Composites: Part A, vol. 69, p.195–207, (2015).

DOI: 10.1016/j.compositesa.2014.11.012

Google Scholar

[8] B. K. Behera and B. P. Dash, Mechanical behavior of 3D woven composites, Materials & Design, (2014).

Google Scholar

[9] X. Zeng, L. P. Brown, A. Endruweit, M. Matveev, and A. C. Long, Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties, Composites: Part A, vol. 56, pp.150-160, (2014).

DOI: 10.1016/j.compositesa.2013.10.004

Google Scholar

[10] Y. Mahadik and S. R. Hallett, Finite element modelling of tow geometry in 3D woven fabrics, Composites: Part A, vol. 41, pp.1192-1200, (2010).

DOI: 10.1016/j.compositesa.2010.05.001

Google Scholar

[11] H. Gu and Z. Zhili, Tensile behavior of 3D woven composites by using different fabric structure, Materials and Design, vol. 23 (2002) 671–674, pp.671-674, (2002).

DOI: 10.1016/s0261-3069(02)00053-5

Google Scholar

[12] B. K. Behera and B. P. Dash, An Experimental Investigation into the Mechanical Behaviour of 3D Woven Fabrics for Structural Composites, Fibers and Polymers 2014, vol. 15, pp.1950-1955, (2013).

DOI: 10.1007/s12221-014-1950-9

Google Scholar

[13] B. K. Behera and R. Mishra, 3D weaving, Indian Journal of FIbre & Textile Research, vol. 33, pp.274-287, (2008).

Google Scholar

[14] M.H. Peerzada, S. A. Abbasi, and A. Khatri, Effect of Weave Structure on Tensile Strength and Yarn Crimp of Three-Dimensional Fabric, Science Institute Lahore, vol. Sci. Int. (Lahore), 48 24(1), 47-50, 2012, pp.47-50, (2012).

Google Scholar

[15] M. H. Mohamed and A. E. Bogdanovich, Comparative Analysis Of Different 3d Weaving Processes, Machines And Products, in In Proceedings of the 17th International Conference on Composite Materials (ICCM-17), (2009).

Google Scholar

[16] A. R. Labanieh, X. Legrand, V. Koncar, and D. Soulat, Evaluation Of The Elastic Behavior Of Multiaxis 3d-Woven Preforms By Numerical Approach, Journal of Composite Materials, vol. 48, (2014).

DOI: 10.1177/0021998313508800

Google Scholar

[17] J. S. Jones, D. L. Polis, R. R. Rowles, and K. N. Segal, Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures, (2011).

Google Scholar

[18] S. V. Lomov, A. E. Bogdanovich, D. S. Ivanov, D. Mungalov, M. Karahan, and I. Verpoest, A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results, Composites: Part A, vol. 40, pp.1134-1143, (2009).

DOI: 10.1016/j.compositesa.2009.03.012

Google Scholar

[19] S. L. Valença, S. Griza, V. G. de Oliveira, E. M. Sussuchi, and F. G. C. de Cunha, Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric, Composites: Part B, vol. 70, pp.1-8, (2015).

DOI: 10.1016/j.compositesb.2014.09.040

Google Scholar

[20] H. Ullah, A. R. Harland, and V. V. Silberschmidt, Characterisation of mechanical behaviour and damage analysis of 2D woven composites under bending, Composites Part B, vol. 75, pp.156-165, (2015).

DOI: 10.1016/j.compositesb.2015.01.036

Google Scholar

[21] B. Zahid and X. Chen, Properties of 5-layer angle-interlock Kevlar-based composite structure manufactured from vacuum bagging, Journal of Composite Materials, vol. 47, pp.3227-3234, (2012).

DOI: 10.1177/0021998312463457

Google Scholar

[22] H. Gu, Tensile and Bending Behaviours of Laminates with Various Fabric Orientations, Materials & Design, vol. 27, pp.1086-1089, (2006).

DOI: 10.1016/j.matdes.2005.03.012

Google Scholar

[23] Y. Mahadik and S. R. Hallett, Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties, Composites: Part A, vol. 42, p.1592–1600, (2011).

DOI: 10.1016/j.compositesa.2011.07.006

Google Scholar

[24] F. Stig and S. Hallström, Influence of crimp on 3D-woven fibre reinforced composites, Composite Structures 9, vol. 95, pp.114-122, (2013).

DOI: 10.1016/j.compstruct.2012.07.022

Google Scholar

[25] L. Tong, A. P. Mouritz, and M. K. Bannister, 3D Fibre Reinforced Polymer Composites: Elsevier, (2002).

DOI: 10.1016/b978-008043938-9/50012-0

Google Scholar

[26] F. Stig, An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composites, Licentiate Thesis, Department of Aeronautical and Vehicle Engineering, School of Engineering Sciences, Kungliga Tekniska högskolan (KTH), Stockholm, Sweden, (2009).

Google Scholar

[27] Y. Mahadik, K. A. R. Brown, and S. R. Hallett, Characterisation of 3D woven composite internal architecture and effect of compaction, Composites Part A: Applied Science and Manufacturing, vol. 41, pp.872-880, (2010).

DOI: 10.1016/j.compositesa.2010.02.019

Google Scholar

[28] M. P. Saiman, M. S. Wahab, and M. U. Wahit, The Effect of Fabric Weave on Tensile Strength of Woven Kenaf Reinforced Unsaturated Polyester Composite, International Colloquium on Textile Engineering, Fashion, Apparel & Design 2014, (2014).

DOI: 10.1007/978-981-287-011-7_5

Google Scholar

[29] S. Kari, M. Kumar, I. A. Jones, N. A. Warrior, and A. C. Long, Effect Of Yarn Cross-Sectional Shapes And Crimp On The Mechanical Properties Of 3d Woven Composites, Proceedings of the 17th IFAC World Congress, 2008, pp.1-10, (2008).

Google Scholar

[30] M.P. Saiman, M. S Wahab, and M. U. Wahit, The Effect of Yarn Linear Density on Mechanical Properties of Plain Woven Kenaf Reinforced Unsaturated Polyester Composite, Applied Mechanics and Materials, vol. 465 - 466, pp.962-966, (2014).

DOI: 10.4028/www.scientific.net/amm.465-466.962

Google Scholar

[31] M. Kılıç and A. Okur, Relationships Between Yarn Diameter / Diameter Variation and Strength, FIBRES & TEXTILES in Eastern Europe, vol. 14, pp.84-87, (2006).

Google Scholar

[32] E. Mader, J. Rausch, and N. Schmidt, Commingled yarns – Processing aspects and tailored surfaces of polypropylene/glass composites, Composite Part A, vol. 39, p.612–623, (2008).

DOI: 10.1016/j.compositesa.2007.07.011

Google Scholar

[33] J. -E. Rocher, S. Allaoui, G. Hivet, and E. Blond, Experimental characterization of the tensile behavior of a polypropylene/glass 3D-fabric: from the yarn to the fabric, presented at the 4th World Conference on 3D Fabrics and their Applications, Germany, (2012).

Google Scholar

[34] N. K. Naik and R. Kuchibhotla, Analytical Study of Strength and Failure Behaviour of Plain Weave Fabric Composite Made of Twisted Yarn, Composite Part A, vol. 33, pp.697-708, (2002).

DOI: 10.1016/s1359-835x(02)00012-x

Google Scholar

[35] Y. Wang and D. Zhao, Effect Fabric Structures on Mechanical Properties of 3D Textile Composite, Journal of Industrial Textiles, vol. 35, pp.239-256, (2006).

DOI: 10.1177/1528083706057595

Google Scholar