Aspects of Titanate Coupling Agents and their Application in Dental Polymer Composites: A Review

Article Preview

Abstract:

Silanes are extensively used in dental composites to facilitate chemical bonding among the phases of composites. Despite their popularity, the dental application of silanes as coupling agents is still restricted by a few limitations, which include their hydrolytic instability in aqueous oral environment and their inefficiency to bond with nonsilica fillers. Titanate coupling agents can provide good interphase bonding, improve mechanical properties, enhance filler homogenous dispersibility, and modify the rheological behavior of composites. Moreover, moisture resistance can be improved by adding a small amount of titanates. This review aims to evaluate the efficiency of using titanate coupling agents in dental polymer composites and denture bases, particularly when titanium-based fillers are impregnated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Lien, K.S. Vandewalle, Physical properties of a new silorane-based restorative system, Dent. Mater. 26 (2010) 337–344.

DOI: 10.1016/j.dental.2009.12.004

Google Scholar

[2] M. Zhang, J.P. Matinlinna, E-Glass fiber reinforced composites in dental applications, Silicon. 4 (2012) 73-78.

DOI: 10.1007/s12633-011-9075-x

Google Scholar

[3] S. Bose, P.A. Mahanwar, Effects of titanate coupling agent on the properties of mica-reinforced nylon-6 composites, Polym. Eng. Sci. 45 (2005) 1479-1486.

DOI: 10.1002/pen.20426

Google Scholar

[4] C.Y.K. Lung, J.P. Matinlinna, Aspects of silane coupling agents and surface conditioning in dentistry: An overview, Dent. Mater. 28 (2012) 467–477.

DOI: 10.1016/j.dental.2012.02.009

Google Scholar

[5] N.W. Elshereksi, M.J. Ghazali, A. Muchtar, C.H. Azhari, Perspectives for Titanium-Derived Fillers Usage on Denture Base Composite Construction: A Review Article, Adv. Mater. Sci. Eng. (2014) 1-13.

DOI: 10.1155/2014/746252

Google Scholar

[6] T. Hooshmand, R. van Noort, A. Keshvad, Bond durability of resin-bonded and silane treated ceramic surface, Dent. Mater. 18 (2002) 179-188.

DOI: 10.1016/s0109-5641(01)00047-1

Google Scholar

[7] M. Zhou, J.L. Drummond, L. Hanley, Barium and strontium leaching from aged glass particle/resin matrix dental composites, Dent. Mater. 21 (2005) 145–155.

DOI: 10.1016/j.dental.2004.02.009

Google Scholar

[8] K. -J.M. Soderholm, Leaking of fillers in dental composites, J. Dent. Res., 62 (1983) 126-130.

DOI: 10.1177/00220345830620020801

Google Scholar

[9] J.P. Matinlinna, P.K. Vallittu, Silane based concepts on bonding resin composite to metals, J. Contemp. Dent. Pract. 8 (2007) 1-13.

DOI: 10.5005/jcdp-8-2-1

Google Scholar

[10] D. Vojvodić, F. Matejicek, Z. Schauperl, K. Mehulic, I. Bagic-Cukovic, S. Segovic, Flexural strength of E-Glass fiber reinforced dental polymer and dental high impact strength resin, Strojarstvo, 50 (2008) 221-230.

DOI: 10.7205/milmed.173.10.1023

Google Scholar

[11] M. Özcan, P. Alander, P.K. Valittue, M. -C. Huysmans, W. Kalk, Effect of three surface conditioning methods to improve bond strength of particulate filler resin composites, J. Mater. Sci. Mater. Med. 16 (2005) 21-27.

DOI: 10.1007/s10856-005-6442-4

Google Scholar

[12] C.M. Vaz, R.L. Reis, A.M. Cunha, Use of coupling agents to enhance the interfacial interactions in starch–EVOH/hydroxylapatite composites, Biomater. 23 (2002) 629–635.

DOI: 10.1016/s0142-9612(01)00150-8

Google Scholar

[13] G. Guo, Y. Fan, J. -F. Zhang, J.L. Hagan, X. Xu, Novel dental composites reinforced with zirconia-silica ceramic nanofibers, Dent. Mater. 28 (2012) 360–368.

DOI: 10.1016/j.dental.2011.11.006

Google Scholar

[14] S. Debnath, S.L. Wunder, J.I. McCool, G.R. Baran, Silane treatment effects on glass/resin interfacial shear strengths, Dent. Mater. 19 (2003) 441–448.

DOI: 10.1016/s0109-5641(02)00089-1

Google Scholar

[15] M. Hashimoto, H. Ohno, M. Kaga, H. Sano, H. Oguchi, The extent to which resin can infiltrate dentin by acetone based adhesives, J. Dent. Res. 81(2002) 74-78.

DOI: 10.1177/002203450208100116

Google Scholar

[16] Y. Yoshida, K. Shirai, Y. Nakayama, M. Itoh, M. Okazaki, H. Shintani, P. Lambrechts, G. Vanherle, B. Van Meerbeek, Improved filler –matrix coupling in resin composites, J. Dent. Res. 81 (2002) 270-273.

DOI: 10.1177/154405910208100409

Google Scholar

[17] I. Kemal, A. Whittle, R. Burford, T. Vodenitcharova, M. Hoffman, Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate and titanate coupling agent, Appl. Polym. Sci., 127 (2013) 2339-2353.

DOI: 10.1002/app.37774

Google Scholar

[18] S. Bose, P.A. Mahanwar, Effect of titanate coupling agent on the mechanical, thermal, dielectric, rheological, and morphological properties of filled nylon 6, J. Appl. Polym. Sci. 99 (2006) 266–272.

DOI: 10.1002/app.22472

Google Scholar

[19] G.J. Li, S.R. Fan, K. Wang, X. -L. Ren, X.W. Mu, Modification of TiO2 with titanate coupling agent and its impact on the crystallization behaviour of polybutylene terephthalate, J. Iran. Polym. 19 (2010) 115-121.

Google Scholar

[20] M. Hajian, G.A. Koohmareh, A. Mostaghasi, Investigation of the Effects of Titanate as Coupling Agent and Some Inorganic Nanoparticles as Fillers on Mechanical Properties and Morphology of Soft PVC, Inter. J. Polym. Sci. (2011) 1-9.

DOI: 10.1155/2011/238619

Google Scholar

[21] Y.W. Leong, M.B. Abu Bakar, Z.A. Mohd. Ishak, A. Ariffin, Effects of Filler treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites, J. Appl. Polym. Sci. 98 (2005).

DOI: 10.1002/app.21507

Google Scholar

[22] C.A. Wah, L.Y. Choong, G.S. Neon, Effects of titanate coupling agent on rheological behaviour, dispersion characteristics and mechanical properties of talc filled polypropylene Euro. Polym. J. 36 (2000) 789-801.

DOI: 10.1016/s0014-3057(99)00123-8

Google Scholar

[23] M. Hussain, A. Nakahira, S. Nishijima, K. Niihara, Effects of coupling agents on the mechanical properties improvement of the TiO2 reinforced epoxy system, Mater. Lett. 26 (1996) 299-303.

DOI: 10.1016/0167-577x(95)00253-7

Google Scholar

[24] R.B. Seymour. Additives for Plastics. State of the Art. Vol 1, Academic Press Inc., USA, (1978).

Google Scholar

[25] N.A.N. Alkadasi, U.R. Kapadi, D.G. Hundiwale, Effect of titanate coupling agent on the mechanical properties of clay-filled polybutadiene rubber, J. Appl. Polym. Sci. 93 (2004) 1299–1304.

DOI: 10.1002/app.20549

Google Scholar

[26] A.K. Mehrjerdi, B.A. Mengistu, D. Åkesson, M. Skrifvars, Effects of a titanate coupling agent on the mechanical and thermo-physical properties of talc-reinforced polyethylene compounds, J. Appl. Polym. Sci. (2014) 1-7.

DOI: 10.1002/app.40449

Google Scholar

[27] S.H. Han, H.J. Oh, H.C. Lee, S.S. Kim, The effect of post-processing of carbon fibers on the mechanical properties of epoxy-based composites, Compos.: Part B 45 (2013) 172–177.

DOI: 10.1016/j.compositesb.2012.05.022

Google Scholar

[28] E.M. Petrie. Handbook of Adhesives and Sealants, second ed., McGraw-Hill Inc., USA, (2006).

Google Scholar

[29] N. Menon, F.D. Blum, and L.R. Dharani, Use of titanate coupling agents in Kevlar/phenolic composites, J. Appl. Polym. Sci. (1994) 1-27.

DOI: 10.1002/app.1994.070540112

Google Scholar

[30] R. Roperto, M. Ghazy, O. El-Mowafy, I.J. Pesun, Effect of Surface Conditioning and Resin Cements on the Adhesion of Fiber Posts, J. Dent. Oral Health, 1 (2013) 1-5.

DOI: 10.17303/jdoh.2013.102

Google Scholar

[31] S-w. Yu, S-j. Xiao, X-m. Sang, G-x. Hou, surface modification of nano-TiO2 by titanate coupling agent, Adv. Materi. Res. 538-541 (2012) 350-353.

DOI: 10.4028/www.scientific.net/amr.538-541.350

Google Scholar

[32] W.L. Tham, W.S. Chow, Z.A. Mohd Ishak, Effects of titanate coupling agent on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite denture base composites, J. Compos. Mater. 45 (2011) 2335–2345.

DOI: 10.1177/0021998311401085

Google Scholar

[33] K. Yoshida E.H. Greener, Effects of coupling agents on mechanical properties of metal oxide-polymethacrylate composites, J. Dent. 22 (1994) 57-62.

DOI: 10.1016/0300-5712(94)90149-x

Google Scholar

[34] Y. Xia, F. Zhang, H. Xie, N. Gu, Nanoparticle-reinforced resin-based dental composites, J. Dent. 36 (2008) 450–455.

DOI: 10.1016/j.jdent.2008.03.001

Google Scholar

[35] X. Miao, M. Zhu, Y. Li, Q. Zhang, H. Wang, Synthesis of dental resins using diatomite and nano-sized SiO2 and TiO2, Prog. Nat. Sci.: Mater. Inter. 22 (2012) 94–99.

DOI: 10.1016/j.pnsc.2012.03.006

Google Scholar