Linear Density and Surface Morphology of Kenaf Fibres from Different Extraction Methods

Article Preview

Abstract:

The fineness and morphology of kenaf fibres are the main focus of this paper. The kenaf fibres were processed through water retting, chemical retting and mechanical extractions. The water retting method produces finer fibres between 3.2 to 3.7 Tex while other methods produces fibres between 4.0 to 5.0 Tex. The chemical retting method resulted in smoother fibre surface when examined using Field Emission Scanning Electron Microscopy under different magnifications. The fibre diameters from the different retting and extraction methods vary from 33 to 134 m and did not show to have any relationship with fibre fineness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zimniewska, M. Wladyka-Przybylak, and J. Mankowski, Cellulosic bast fibres, their structure and properties suitable for composite applications, in Cellulose Fibres: Bio-and Nano-Polymer Composites (2011) 97-119.

DOI: 10.1007/978-3-642-17370-7_4

Google Scholar

[2] R. Mahjoub. R. Yatim, J. M. Sam, A. R. M. Hashemi, S. Hamid, Tensile properties of kenaf fibre due to various conditions of chemical fibre surface modifications. Construction and Building Materials, 55 (2014) 103-113.

DOI: 10.1016/j.conbuildmat.2014.01.036

Google Scholar

[3] J. Summerscales, J. Dissanayake, N. P. J. Virk, A. S. Hall, Wayne, A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10) (2010) 1329-1335.

DOI: 10.1016/j.compositesa.2010.06.001

Google Scholar

[4] Amel, B. A. Paridah, M Tahir Sudin, R. Anwar, UMK Hussein, S. Ahmed, Effect of fibre extraction methods on some properties of kenaf bast fibre. Industrial Crops and Products, 46 (2013) 117-123.

DOI: 10.1016/j.indcrop.2012.12.015

Google Scholar

[5] A. Elsaid, A. Dawood, M. Seracino, R. Bobko, C. Mechanical properties of kenaf fibre reinforced concrete. Construction and Building Materials, 25(4) (2011) 1991-(2001).

DOI: 10.1016/j.conbuildmat.2010.11.052

Google Scholar

[6] N.G. Danalatos, and S.V. Archontoulis, Growth and biomass productivity of kenaf (Hibiscus cannabinus, L. ) under different agricultural inputs and management practices in central Greece. Industrial Crops and Products, 32(3) (2010) 231-240.

DOI: 10.1016/j.indcrop.2010.04.013

Google Scholar

[7] J. Shi, S. Q. Barnes, H. M. Horstemeyer, M. Wang, J. Hassan,M. El-Barbary, Kenaf Bast Fibres—Part I: Hermetical Alkali Digestion. International Journal of Polymer Science, (2011) 1-8.

DOI: 10.1155/2011/212047

Google Scholar

[8] L.S. Yaza, L. S. Foo, J. B. Ghafar, S.A.A. Chan, K. W. Tahir, M.I. Paridah, Maznah , Effect of kenaf seed oil from different ways of extraction towards ovarian cancer cells. Food and Bioproducts Processing, 89(4) (2011) 328-332.

DOI: 10.1016/j.fbp.2010.10.007

Google Scholar

[9] S. Kyung Hun, S.K. Obendorf, Chemical and Biological Retting of Kenaf Fibres. Textile Research Journal, 76(10) (2006) 751-756.

DOI: 10.1177/0040517506070520

Google Scholar

[10] J.C. Villar, Revilla, E. Gomez, N. Carbajo, J. M. Simon, Improving the use of kenaf for kraft pulping by using mixtures of bast and core fibres. Industrial Crops and Products, 29(2-3) (2009) 301-307.

DOI: 10.1016/j.indcrop.2008.06.002

Google Scholar

[11] D.V. Parikh, T.A. Calamari, A.P.S. Sawhney, E.J. Blanchard, F. J. Screen, M. Warnock, D.H. Muller, D.D. Stryjewski, Improved Chemical Retting of Kenaf Fibres. Textile Research Journal, 72(7) (2002) 618-624.

DOI: 10.1177/004051750207200709

Google Scholar

[12] D.E. Akin, B. Condon, Brian, M. Sohn, J.A. Foulk, R.B. Dodd, L.L. Rigsby, Optimization for enzyme-retting of flax with pectate lyase. Industrial Crops and Products, 25(2) (2007) 136-146.

DOI: 10.1016/j.indcrop.2006.08.003

Google Scholar

[13] M.J.J.H.A. P Mathew and M.Z.B.H.K. Oksman, Preparation of cellulose nanofibres with hydrophobic surface characteristics. springer, 17 (2010) 299–307.

Google Scholar

[14] H.P.S. Abdul Khalil, Abdul Yusra, AF Ireana Bhat, AH Jawaid, M , Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fibre. Industrial Crops and Products, 31(1) (2010) 113-121.

DOI: 10.1016/j.indcrop.2009.09.008

Google Scholar

[15] M. Paiva, M. Ammar, I. Campos, A. Cheikh, R. Cunha, A., Alfa fibres: Mechanical, morphological and interfacial characterization. Composites Science and Technology, 67(6) (2007) 1132-1138.

DOI: 10.1016/j.compscitech.2006.05.019

Google Scholar

[16] D. K Visi D'Souza, N. Ayre, B. G. Webber Iii, C. L. Allen, M. S., Investigation of the bacterial retting community of kenaf (Hibiscus cannabinus) under different conditions using next-generation semiconductor sequencing. J Ind Microbiol Biotechnol, 40(5) (2013).

DOI: 10.1007/s10295-013-1242-1

Google Scholar

[17] Y.A. El-Shekeil, Sapuan, S. M. Jawaid, M. Al-Shuja'a, O. M. Influence of fibre content on mechanical, morphological and thermal properties of kenaf fibres reinforced poly(vinyl chloride)/thermoplastic polyurethane poly-blend composites. Materials & Design, 58 (2014).

DOI: 10.1016/j.matdes.2014.01.047

Google Scholar

[18] W. Jinhua and G.N. Ramaswamy, One-step processing and bleaching of mechanically separated kenaf fibres: effects on physical and chemical properties. Textile Research Journal, 73(4) (2003) 339-344.

DOI: 10.1177/004051750307300411

Google Scholar

[19] J. Zhang, H. Zhang, and J. Zhang, Evaluation of liquid ammonia treatment on surface characteristics of hemp fibre. Cellulose, 21(1) (2014) 569-579.

DOI: 10.1007/s10570-013-0097-y

Google Scholar