Geometrical Contact Zone Analysis of the Skive Hobbing Process

Article Preview

Abstract:

In this paper, an innovative approach for contact zone analysis of skive hobbing is presented. This process is characterised by varying tool engagements and very small chip thicknesses. The paper describes the process-modelling and the analysis of the workpiece-tool contact. For efficient modelling, a novel dexel-based method for the description of a gear segment with discretized stock allowance is presented. Characteristic for the method is an analytical description of the target workpiece contour which allows to describe points of the surface by Cartesian coordinates on the winding off. On this workpiece contour, dexel are modelled in surface-orthogonal direction. The initial lengths of these dexel describe the stock allowance. By cutting these dexel with a tool, a time-and position-dependent prediction of material removal values, like width of undeformed chip, undeformed chip thickness or cutting directions can be obtained. Selected results are presented and interpreted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-164

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Klocke, E. Brinksmeier, K. Weinert, Capability Profile of Hard Cutting and Grinding Processes, CIRP Annals - Manufacturing Technology 54 (2005) 22-45.

DOI: 10.1016/s0007-8506(07)60018-3

Google Scholar

[2] T. Bausch, Innovative Zahnradfertigung: Verfahren, Maschinen und Werkzeuge zur kostengünstigen Herstellung von Stirnrädern mit hoher Qualität, Expert Verlag, Renningen-Malmsheim, (2006).

Google Scholar

[3] K. -D. Bouzakis, E. Lili, N. Michailidis, O. Friderikos, Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods, CIRP Annals - Manufacturing Technology 57 (2008) 676-696.

DOI: 10.1016/j.cirp.2008.09.001

Google Scholar

[4] W. Rautenbach, Tragfähigkeit schälwälzgefräster Zylinder- und Kegelräder, Frankfurt: Forschungsvereinigung Antriebstechnik E.V., (1988).

Google Scholar

[5] B. Denkena, J. Köhler, A. Schindler, S. Woiwode, Continuous generating grinding - Material engagement in gear tooth root machining, Mechanism and Machine Theory 81 (2014) 11-20.

DOI: 10.1016/j.mechmachtheory.2014.06.008

Google Scholar

[6] C. Brecher, F. Klocke, M. Brumm, F. Hübner, Local simulation of the specific material removal rate for generating gear grinding, Velex P. International Gear Conference, 26th-28th Aug. 2014, Lyon.

DOI: 10.1533/9781782421955.466

Google Scholar

[7] F. Klocke, C. Gorgels, V. Vasiliou, Analysis of the influence of gear dimensions on cutting speed and contact conditions during the gear honing process, Production Engineering 3 (2009)255-259.

DOI: 10.1007/s11740-009-0165-1

Google Scholar

[8] R. Rütti, Beitrag zur Prozessmodellierung am Beispiel des Zahnradhonens, Dr. -Ing. Dissertation der Eidgenössischen Technischen Hochschule Zürich (2000).

Google Scholar

[9] V. Böß, D. Niederwestberg, C. Ammermann, B. Denkena, Cutting edge orthogonal contact-zone analysis using detailed tool shape representation, International Journal of Advanced Manufacturing Technology 75 (2014) 1641-1650.

DOI: 10.1007/s00170-014-6230-8

Google Scholar

[10] DIN 3960, Begriffe und Bestimmungsgrößen für Stirnräder (Zylinderräder) und Stirnradpaare (Zylinderradpaare) mit Evolventenverzahnung, Deutsches Institut für Normung, Beuth Verlag, Berlin, (1987).

DOI: 10.31030/1103126

Google Scholar

[11] V. Böß, B. Denkena, S. Henning, Investigation of the skive hobbing process by applying a dexel-based cutting simulation, Procedia CIRP 37 (2015) 182-187.

DOI: 10.1016/j.procir.2015.08.062

Google Scholar