Intrinsic Hybrid Composites for Lightweight Structures: New Process Chain Approaches

Article Preview

Abstract:

This publication describes new process chain approaches for the manufacturing of intrinsic hybrid composites for lightweight structures. The introduced process chains show a variety of different part and sample types, like insert technology for fastening of hollow hybrid shafts and profiles. Another field of research are hybrid laminates with different layers of carbon fiber reinforced plastics stacked with aluminum or steel sheets. The derived process chains base on automated fiber placement, resin transfer molding, deep drawing, rotational molding and integral tube blow molding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-246

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.S. Kim, S.W. Park, H.Y. Hwang, D.G. Lee: Effect of the smart cure cycle on the performance of the co-cured aluminum/composite hybrid shaft, Composite Structures, Volume 75, Issues 1–4, September 2006, pp.276-288.

DOI: 10.1016/j.compstruct.2006.04.030

Google Scholar

[2] R. Matsuzaki, M. Shibata, A. Todoroki: Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method, Composites Part A: Applied Science and Manufacturing, Volume 39, Issue 2, February 2008, pp.154-163.

DOI: 10.1016/j.compositesa.2007.11.009

Google Scholar

[3] S. Ucsnik, M. Scheerer, S. Zaremba, D.H. Pahr: Experimental investigation of a novel hybrid metal–composite joining technology, Comp. Part A: Appl Sci and Manuf, 41: 3 (2010), p.369–374.

DOI: 10.1016/j.compositesa.2009.11.003

Google Scholar

[4] S.V. Hoa, A. Di Maria, D. Feldman: Inserts for Fastening Sheet Molding Compounds; in: Composite Structures, Issue 8; pp.293-309 (1987).

DOI: 10.1016/0263-8223(87)90021-3

Google Scholar

[5] F. Schievenbusch: Beitrag zu hochbelasteten Krafteinleitungselementen für Faserverbundbauteile, Dissertation Technischen Universität Chemnitz (2003).

Google Scholar

[6] E. Schmachtenberg, M. Schuck, I. Kuehnert: Assembly injection moulding: forming and assembly in one process, Kunststoffe International (2007).

Google Scholar

[7] M. Honkanen, M. Hoikkanen, M. Vippola, J. Vuorinen, J., T. Lepist: Metal–plastic adhesion in injection-molded hybrids, J Adhes Sci Technol, 34, p.1747–1761 (2009).

DOI: 10.1163/016942409x12489445844435

Google Scholar

[8] H. Paul, M. Luke, F. Henning: Combining mechanical interlocking, force fit and direct adhesion in polymer–metal-hybrid structures, Comp. Part B: Eng., Vo. 73, pp.158-165 (2015).

DOI: 10.1016/j.compositesb.2014.12.013

Google Scholar

[9] W.A. Hufenbach, F. Lenz, S. Spitzer, O. Renner: Welle-Nabe-Verbindungen für Leichtbauantriebswellen in Faserverbund-Metall-Mischbauweise, VDI-Berichte Nr. 2176, pp.141-153 (2012).

DOI: 10.51202/9783181023372-257

Google Scholar

[10] F. Möller, C. Thomy, F. Vollertsen, P. Schiebel, C. Hoffmeister, A. S. Herrmann: Novel method for joining CFRP to aluminium. Lane 2010, Physics Procedia, pp.37-45.

DOI: 10.1016/j.phpro.2010.08.027

Google Scholar

[11] A. Modler: Intrinsic lightweight steel-composite hybrids for structural components, Materials Science Forum Vols. 825-826, pp.401-408 (2015).

DOI: 10.4028/www.scientific.net/msf.825-826.401

Google Scholar

[12] R.C. Alderliesten: On the available relevant approaches for fatigue crack propagation prediction in Glare, International Journal of Fatigue, Volume 29, Issue 2, February 2007, p.289–304 (2007).

DOI: 10.1016/j.ijfatigue.2006.03.003

Google Scholar

[13] P. Woizeschke et al.: Joining of aluminum and CFRP parts using titanium foils as transition elements, Euro Hybrid – Materials and Structures 2014 – Proceedings, pp.69-75 (2014).

Google Scholar

[14] C. Schmidt, O. Deniz, K. Voeltzer, P. Weber: Self-Configurable Production of CFRP Aerospace Components Based on Multi-Criteria Structural Optimization, CFK-Valley Convention Stade (2015).

Google Scholar

[15] K. Masania, R. Geissberger, D. Stefaniak, C. Dransfeld: Steel Foil Reinforced Composites: Study of Strength, Plasticity and Ply Size Effects. 20th Int. Conf. Compos. Mater. ICCM-20, Copenhagen (2015).

DOI: 10.1016/j.matdes.2020.109302

Google Scholar

[16] D. Stefaniak, B. Kolesnikov, C. Hühne: Improving the mechanical performance of unidirectional CFRP by metal-hybridization. 15th Europ. Conf. on Comp. Mat., Venice, June (2012).

Google Scholar

[17] A. Fink: Lokale Metall-Hybridisierung zur Effizienzsteigerung von Hochlastfügestellen in Faserverbundstrukturen. Doctoral Thesis, Technische Universität Braunschweig (2010).

Google Scholar

[18] J. Gebhardt, F. Pottmeyer, J. Fleischer, K. Weidenmann: Characterization of metal inserts embedded in carbon fiber reinforced plastics, 20th Symposium on Composites, July 1 - 3, 2015, Vienna, Austria, Trans Tech Publ, Pfaffikon, S. 506–513 (2015).

DOI: 10.4028/www.scientific.net/msf.825-826.506

Google Scholar

[19] F. Ballier; J. Schwennen; J. Berkmann; J. Fleischer: The Hybrid RTM Process Chain: Automated Insertion of Load Introducing Elements during Subpreform Assembling, Applied Mechanics and Materials, Vol. 794, pp.312-319 (2015).

DOI: 10.4028/www.scientific.net/amm.794.312

Google Scholar

[20] J. Fleischer, S. -F. Koch, P. Ruhland: Rotational Molding of Fiber Reinforced Plastics with Elastic Composite Core. CIRP COMA Conference 2016, Proceedings, South Africa, pp.181-186.

Google Scholar

[21] C. Garthaus et al.: Tape braiding: high performance fibre-reinforced thermoplastic profile structures, JEC COMPOSITES Magazine. Vol. 69 2015, 4 (2015).

Google Scholar