Active Wind Turbine Deicing-Systems Produced via Plasma-Coating-Technology

Article Preview

Abstract:

Within the framework of the Renewable Energies Act, besides biomass power stations wind turbine systems enact a significant role since they produce power by using a primary source of renewable energies. As widespread and technical advanced wind turbines are, they still exhibit shortcomings when operating in cold temperatures. Therefore, especially in frigid regions, there is a high risk regarding icing and forming of hoarfrost. Iced rotor blades lead to considerable disadvantages during operation, like ice shedding, unbalanced or off-centered loads, and downtimes.Different heating systems that are already available show some disadvantages, such as the difficulties in integrating the installation of those systems directly in the production process. Thus, a new technology is presented which eliminates existing challenges and can be integrated into current production lines. Furthermore, the results of the investigations for the applicability of this new system for de-icing wind turbines is pictured. Due to an innovative plasma technology, the surfaces of rotor blades can be coated with a heating structure layer. The new technology is presented and the influence of different machine parameters of the coating process are shown based on several experimental results. In further tests, the metal structured rotor blades are examined under real conditions and the suitability of this technology for a series launch is rated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

320-327

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Presse- und Informationsamt der Bundesregierung, Erneuerbare Energien: Ein neues Zeitalter hatbegonnen. [Online] Available: www. bundesregierung. de/Webs/Breg/DE/Themen/Energiewende/ EnergienErzeugen/ Erneuerbare Energien-Zaitalter/_node. html. Accessed on Jun. 02. (2016).

DOI: 10.3139/9783446437371.fm

Google Scholar

[2] H. Seifert, Technical Requirements for rotor blades operating in cold climate. [Online] Available: www. dewi. de/dewi/fileadmin/pdf/publications/Magazin_26/boreas_vi_seifert_01. pdf. Accessed on: Jun. 02 (2016).

Google Scholar

[3] Nordex Annual Report 2013 [Online] Available: http: /sw-gb. de/nordex_sr2/index. php?id=295 Accessed on Jun. 02. (2016).

Google Scholar

[4] Fraunhofer Institute, Wind Power: Smart anti-icing system for rotor blades. [Online] Available: www. pennenergy. com/articles/pennenergy/2014/12/wind-power-smart-anti-icing-system-for-rotor-blades. html. Accessed on: Jul. 01 (2015).

DOI: 10.2514/6.2020-3145.vid

Google Scholar

[5] P. Uhlmann, Biometrische Oberflächen verringern und verhindern Eiswachstum. [Online] Available: www. nachhaltige-innovationen. de/de/785. php. Accessed on: Jun. 02 (2016).

Google Scholar

[6] V. Stenzel, Anti-Eis-Beschichtungen: Vereisung-Eine Herausforderung. [Online] Available: www. ifam. fraunhofer. de/content/dam/ifam/de/documents/Klebtechnik_Oberflaechen/Lacktechnik/anti-eis-beschichtungen_fraunhofer_ifam. pdf. Accessed on: Jun. 02 (2016).

DOI: 10.1016/j.mprp.2016.08.061

Google Scholar

[7] J. -M. Altgeld, Dem Windrad mit Carbon-Nanoröhrchen einheizen: EU-Projekt Windheat. [Online] Available: www. ingenieur. de/Fachbereiche/Windenergie/Dem-Windrad-Carbon-Nanoroehrchen-einheizen. Accessed on: Jun. 02 (2016).

Google Scholar

[8] adios Patent GmbH, ADIOS - das Rotorblattheizungssystem: Anti- and De-Ice Operating System. [Online] Available: http: /www. adios-patent. de/index. php/de/produkt. Accessed on: Jun. 02 (2016).

Google Scholar

[9] Technologie-Spitzenreiter beim Rotorblattenteisungssystem: Validierung der ENERCON Rotorblattenteisung abgeschlossen, in WINDBLATT ENERCON Magazin, p.8–9.

Google Scholar

[10] E. Hau, Windkraftanlagen: Grundlagen, Technik, Einsatz, Wirtschaftlichkeit, 4th ed. Berlin, Heidelberg: Springer - Verlag, (2008).

DOI: 10.1007/978-3-642-28877-7

Google Scholar

[11] R. Schramm, T. Reitberger, and J. Franke, Electrical Characterization of Fibre-Reinforced Plastics by Atmospheric Plasma Technology, in 47th International Symposium on Microelectronics, San Diego, (2014).

Google Scholar

[12] R. Schramm, Strukturierung und Metallisierung, in Räumliche elektronische Baugruppen (3D-MID): Werkstoffe, Herstellung, Montage und Anwendungen für spritzgegossene Schaltungsträger, J. Franke, Ed, München: Carl Hanser Verlag GmbH & Co. KG, 2013, pp.65-116.

DOI: 10.3139/9783446437784.003

Google Scholar

[13] R. Schramm and J. Franke, Electrical Functionalization of Thermoplastic Materials by Cold Active Atmospheric Plasma Technology, in Proceedings of the 15th Electronics Packaging Technology Conference (EPTC), Singapore, (2013).

DOI: 10.1109/eptc.2013.6745694

Google Scholar