Simulating the Bearing Load due to Unbalance in Wood Machining Tools

Article Preview

Abstract:

To realise the high cutting speeds required in wood machining for a productive cutting process, high-speed spindles are used especially in CNC machining centres. The high rotational speed during operation, however, results in great centrifugal forces at the tool. Particularly unbalance here leads to a great loading of the spindle bearing as well as to reduced occupational safety. Unlike metal removal, the machining of wood and engineered wood products is subject to other requirements regarding the process parameters, such as e.g. higher cutting speeds or material removal rates. For that reason, economical sensible balance qualities for tools in wood machining are analysed within the IGF project 18381 N „Establishing the necessary balance quality of tools in wood machining“, which is carried out in cooperation with a working group from industry and funded by the Federal Ministry for Economic Affairs and Energy (BMWi). In order to analyse how unbalances in tools influences the loads of the spindle bearing, a simulation model of a spindle will be developed and constructed for wood machining. Serving as a basis of the model, the frequency responses of the static spindle will be established by experiment. Based on this, the natural vibration behaviour of the spindle will be simulated in a finite element model. Finally, it will be presented how test tools with different balance conditions influence the bearing load of the spindle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-344

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Schneider, Auswuchttechnik, 8th. ed., Springer-Vieweg, Berlin, Heidelberg, (2013).

Google Scholar

[2] H. Schulz, T. Wuerz, Balancing Requirements for Fast Rotation Tools and Spindle Systems, CIRP Annals-Manufacturing Technology 47. 1 (1998), 321-324.

DOI: 10.1016/s0007-8506(07)62842-x

Google Scholar

[3] DIN ISO 1940-1, Mechanische Schwingungen - Anforderungen an die Auswuchtgüte von Rotoren in konstantem (starrem) Zustand – Teil 1: Festlegung und Nachprüfung der Unwuchttoleranz, Beuth-Verlag, Berlin, (2004).

Google Scholar

[4] DIN 69888, Auswuchtanforderungen an rotierende Werkzeugsysteme Beuth-Verlag, Berlin, (2008).

DOI: 10.31030/1456271

Google Scholar

[5] DIN EN ISO 15641, Fräswerkzeuge für die Hochgeschwindigkeitsbearbeitung - Sicher-heitstechnische Anforderungen, Beuth-Verlag, Berlin, (2001).

DOI: 10.31030/9136567

Google Scholar

[6] DIN EN 847-1, Maschinen-Werkzeuge für Holzbearbeitung – Sicherheitstechnische Anforderungen – Teil 1: Fräs- und Hobelwerkzeuge, Kreissägeblätter, Beuth-Verlag, Berlin, (2013).

DOI: 10.31030/2656922

Google Scholar

[7] Y. Altintas, Y. Cao, Virtual design and optimization of machine tool spindles, CIRP Annals-Manufacturing Technology 54. 1 (2005), 379-382.

DOI: 10.1016/s0007-8506(07)60127-9

Google Scholar

[8] X. Sheng, et al., Calculation of ball bearing speed-varying stiffness, Mechanism and Machine Theory 81(2014), 166-180.

DOI: 10.1016/j.mechmachtheory.2014.07.003

Google Scholar

[9] V. Slavov, M. Kimmelmann, U. Heisel, Media, Data and Energy Transmission in Machine Tool Spindles: an FE Analysis of Implementation Possibilities, Applied Mechanics & Materials 794 (2015), 403-410.

DOI: 10.4028/www.scientific.net/amm.794.403

Google Scholar

[10] ANSYS Mechanical Rotordynamics 16. 0. ANSYS Inc., Canonsburg, Pennsylvania, USA, (2015).

Google Scholar

[11] M. Rantatalo, et al., Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement, International Journal of Machine Tools and Manufacture 47. 7 (2007), 1034-1045.

DOI: 10.1016/j.ijmachtools.2006.10.004

Google Scholar