Electromagnetic System to Improve the Manufacturing Accuracy at the Presence of Horizontal Process Forces

Article Preview

Abstract:

Forming asymmetric parts leads to horizontal process forces applied to the ram of a form-ing machine. These forces entail horizontal ram displacement and influence the quality of the pro-duced parts negatively. By application of horizontal counterforces to the ram, the displacement can be avoided and the process stability be improved. For the purpose of applying horizontal counter-forces, an electromagnetic system, which will be integrated in a forming machine, is currently under development. The requirements to the system are presented as well as the design optimised in vali-dated electromagnetic simulations and the approach for the mechanical integration into a forming machine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-376

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Salfeld, T. Matthias, R. Krimm, B. -A. Behrens, Analysis of Machine Influence on Process Stability in Sheet Bulk Metal Forming, Procedia CIRP vol. 3 (2012) pp.32-36.

DOI: 10.1016/j.procir.2012.07.007

Google Scholar

[2] K. Großmann, H. Wiemer, A. Hardtmann, L. Penter, Stand der Simulation von Umformprozessen mit den elastischen Einflüssen aus Maschine und Werkzeug, in: Neue Wege zum wirtschaftlichen Leichtbau, EFB-Kolloquium, Fellbach, 2007, p.167–179.

Google Scholar

[3] C. Brecher, M. Esser, S. Witt, Interaction of manufacturing process and machine tool, Annals of the CIRP 58 (2009) 588–607.

DOI: 10.1016/j.cirp.2009.09.005

Google Scholar

[4] DIN 55189-1, Ermittlung von Kennwerten für Pressen der Blechverarbeitung bei statischer Belastung, Mechanische Pressen, (1988).

Google Scholar

[5] V. Salfeld, Experimentelle und numerische Untersuchungen zur Verlagerung des Pressenstößels infolge einer Horizontalkraft. Universität Hannover, Dissertation, PZH Verlag, Garbsen, (2015).

Google Scholar

[6] B. -A. Behrens, A. Bouguecha, R. Krimm, T. Matthias, V. Salfeld, Characterization of Horizontal Loads in the Production of Asymmetrical Parts, KEM vol 473 (2011) pp.223-228.

DOI: 10.4028/www.scientific.net/kem.473.223

Google Scholar

[7] H. -W. Wagener, New developments in sheet metal forming: sheet materials, tools and machinery, JMPT 72 (1997) p.342–357.

DOI: 10.1016/s0924-0136(97)00193-3

Google Scholar

[8] H. Schrobbach, Kompensation der Stößelkippung an mechanischen Zweipunktpressen unter der Berücksichtigung des Horizontalversatzes im Werkzeugsystem. Dissertation, TU Chemnitz-Zwickau, (1995).

Google Scholar

[9] Schuler AG, Neue Maschine mit ServoDirekt-Technologie: Pressemitteilung, available at https: /www. schulergroup. com/unternehmen/presse/pressemeldungen/tab/archiv/2014/2014_10_22_msc/index. html (accessed on March 26, 2016).

Google Scholar

[10] B. -A. Behrens, R. Krimm, V. Salfeld, Process-Machine Interaction in Sheet-Bulk Metal Forming, KEM 504-506 (2012) p.999–1004.

DOI: 10.4028/www.scientific.net/kem.504-506.999

Google Scholar

[11] B. -A. Behrens, R. Krimm, M. Gröne, Stößelversatz mit neuartigem System vermeiden: Auslegung einer elektromagnetischen Aktorik zum Aufbringen horizontaler Kräfte auf den Stößel, wt Werkstattstechnik online (2014) p.673–678.

DOI: 10.37544/1436-4980-2014-10-673

Google Scholar

[12] V. Salfeld, R. Krimm, S. Hübner, T. Matthias, M. Vucetic, Sheet-Bulk Metal Forming of Symmetric and Asymmetric Parts, in: WGP Congress 2013, 2013, p.229–236.

DOI: 10.4028/www.scientific.net/amr.769.229

Google Scholar

[13] M. Merklein, J.M. Allwood, B. -A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya, A. Weckenmann, Bulk forming of sheet metal, CIRP Annals - Manufacturing Technology 61 (2012) 725–745.

DOI: 10.1016/j.cirp.2012.05.007

Google Scholar

[14] S. Matthias, A. Loderer, S. Koch, M. Gröne, M. Kästner, S. Hübner, R. Krimm, E. Reithmeier, T. Hausotte, B. -A. Behrens, Metrological solutions for an adapted inspection of parts and tools of a sheet-bulk metal forming process, Production Engineering 10 (2016).

DOI: 10.1007/s11740-015-0647-2

Google Scholar

[15] M. Gröne, V. Salfeld, R. Krimm, Design of an Electromagnetic System to Avoid Horizontal Ram Displacement, in: WGP Congress 2014: Progress in Production Engineering, Erlangen, 2014, p.237–244.

DOI: 10.4028/www.scientific.net/amr.1018.237

Google Scholar

[16] DIN VDE 0580, Elektromagnetische Geräte und Komponenten, VDE Verlag GmbH, Berlin 01. 040. 29; 29. 020, (2011).

Google Scholar

[17] E. Kallenbach, Elektromagnete: Grundlagen, Berechnung, Entwurf und Anwendung, 4th ed., Vieweg+Teubner Verlag, Wiesbaden, (2012).

Google Scholar

[18] G. Müller, K. Vogt, B. Ponick, Berechnung elektrischer Maschinen, 6th ed., WILEY-VCH, Weinheim, (2008).

Google Scholar

[19] DIN EN 10106, Cold rolled non-oriented electrical steel sheet and strip delivered in the fully processed state (German version) 77. 140. 50, (2007).

DOI: 10.3403/30159084

Google Scholar

[20] Bikar-Metalle GmbH, Technisches Datenblatt zu EN AE-7075, available at http: /www. bikar. com/fileadmin/download/7075-komplett. pdf (accessed on June 17, 2015).

Google Scholar

[21] B. -A. Behrens, A. Bouguecha, M. Vucetic, S. Hübner, D. Rosenbusch, S. Koch, Numerical and Experimental Investigations of Multistage Sheet-Bulk Metal Forming Process with Compound Press Tools, in: Material Forming ESAFORM 2015, 2015, p.1153–1158.

DOI: 10.4028/www.scientific.net/kem.651-653.1153

Google Scholar

[22] B. -A. Behrens, K. Voges-Schwieger, A. Bouguecha, J. Mielke, M. Vucetic, Material Charaterization for Sheet-Bulk Metal Forming, in: Material Forming ESAFORM, 2012, p.1029–1034.

DOI: 10.4028/www.scientific.net/kem.504-506.1029

Google Scholar