Mathematical Modeling and Optimization of Fluidized Layer Carbonitriding Process for 1C 25 Steel

Article Preview

Abstract:

This paper presents the experiment-based mathematical modelling of fluidized bed carbonitriding process for 1C 25 steel meant to optimize this type of thermochemical processing.Based on experimental results, the mathematical model was developed, which is a second order equation with three unknown terms (parameters): temperature, depth of carbonitrided layer, the percentage of ammonia.The mathematical model allowed the simulation of the fluidized layer carbonitriding process according to its parameters and the thermal energy optimization for obtaining HV hardness values in the range 300-400 MPa.Using the software package Matlab a graphical interface was done, through which all the combinations of technological parameters of the carbonitriding process are determined, leading to obtaining values of microhardness between 300 and 400 MPa, as well as the amount of energy consumed for each variant. The variant consuming the lowest energy is considered optimal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-187

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ivanescu, E. Vasilescu, N. Cananau, L. Ivanescu,  Transferul de masa la procesarea materialelor metalice (Mass transfer processing of metallic materials), Ed. Didactica şi Pedagogica Bucuresti 2004, ISBN 973-30-2550-X.

Google Scholar

[2] E. Gianotti, et al., Grain boundary oxidation in endothermic gas carburising process, in Proceedings of 7th International Tooling Conference, Torino, Italy, May 1–5, (2006) 481.

Google Scholar

[3] H. - P. Schmidt, P. Grohmann and G. Wagendorfer, A new carburizing process to reduce internal oxidation of metals, presented at 3rd International Conference on Thermal Process Modelling and Simulation (IFHTSE), Budapest, (2006).

Google Scholar

[4] Y. Prawoto, et al., Carbon restoration for decarburized layer in spring steel, Journal of Materials Engineeringand Performance, 13(5), (2004) 627.

DOI: 10.1361/10599490420043

Google Scholar

[5] Gh. Ivanuş, I. Todea, Al. Pop, S. Nicola, Gh. Damian, Ingineria fluidizării (Engineering streamlining), Ed. Tehnică, Bucureşti, (1996).

Google Scholar

[6] I. Giacomelli s. a. - Tehnologii neconvenţionale cu transfer de fază (Unconventional technologies phase transfer), Ed. Lux Libris, (2000).

Google Scholar

[7] I. Ciucă, S Dumitriu, Modelarea şi Optimizarea Proceselor Metalurgice de Deformare Plastică şi Tratamente Termice (Metallurgical Processes Modeling and Optimization of Plastic Deformation and Heat Treatment), Ed. Didactică şi Pedagogică, Bucureşti, (1998).

DOI: 10.37897/rjid.2016.4.10

Google Scholar

[8] Yan, M., Yan, J., and Bell, T., Numerical simulation of nitrided layer growth and nitrogen distribution in ε-Fe2–3 N, γ'-Fe4N and α-Fe during pulse plasma nitriding of pure iron, Modeling and Simulation in Material Science and Engineering, 8, (2000).

DOI: 10.1088/0965-0393/8/4/307

Google Scholar

[9] M. Ghinea, V. Fireţeanu, MATLAB – calcul numeric – grafică – aplicaţii (MATLAB - Numerical - graphical – applications), Ed. Teora, ISBN 973-601-275-1, Bucureşti, (1998).

Google Scholar

[10] T. Baron ş. a., - Statistică teoretică şi economică (Economic and statistical theory), Ed. Didactică şi Pedagogică. Bucureşti, (1995).

Google Scholar

[11] D. Popescu; F. Ionescu, R. Dobrescu, D. Ştefanoiu, - Modelare în ingineria proceselor industriale (Industrial process engineering modeling), Ed. AGIR, Bucuresti (2011).

Google Scholar

[12] D. Dragomir, L. Drugă, L. Adomnică, The mathematical modeling of the fluidized bed carburizing, Tratamente Termice si Ingineria Suprafeţelor, ISSN 1221-5678, II (1) (2002).

Google Scholar

[13] D. Taloi, Optimizarea proceselor tehnologice, Aplicaţii în metalurgie (Optimization of technological processes, applications in metallurgy), Ed. Academiei, Bucureşti, (1987).

Google Scholar

[14] M. Neacsu, D. Hanganu, E. Vasilescu - Mathematical modeling of thermomechanical treatment process applied to aluminum base alloys for aeronautics, Analele Universitatii Dunarea de Jos, Galati, Fascicula IX Metalurgie şi Ştiinţa Materialelor, ISSN 1453-083X, 4, (2011).

Google Scholar

[15] Murry Guy, Une nouvelle norme europeenne Acier pour nitruration, Traitement Thermique, 339, (2002) 30.

Google Scholar

[16] D. Ştefănescu, A. Leca et al., Transfer de căldură şi masă. Teorie şi aplicaţii (Heat and mass transfer. Theory and Applications), Ed. Didactică şi Pedagogică, Bucureşti, (1983).

Google Scholar