[1]
M. Hamiuddin, Correlation between mechanical properties and porosity of sintered iron and steels-a review, Powder Metall. Int. 18 (1986) 73-76.
Google Scholar
[2]
K.D. Christian, R.M. German, Relation between pore structure and fatigue behavior in sintered iron–copper–carbon, Int. J. Powder Metall. 31 (1995, ) 51–61.
Google Scholar
[3]
A. Fleck, R.A. Smith, Effect of density on tensile strength, fracture toughness and fatigue crack propagation behaviour of sintered steel, Powder Metall 3 (1981) 121–125.
DOI: 10.1179/pom.1981.24.3.121
Google Scholar
[4]
B. Dubrujeaud, M. Vardavoulias and M. Jeandin, The role of porosity in the dry sliding wear of a sintered ferrous alloy, Wear 174 (1994) 155-161.
DOI: 10.1016/0043-1648(94)90097-3
Google Scholar
[5]
D. A. Gerard, D.A. Koss, Low cycle fatigue crack initiation: Modeling the effect of porosity, International Journal of Powder Metallurgy 26 (1990) 337-343.
Google Scholar
[6]
B. Kubicki, Stress concentration at pores in sintered materials, Powder Metall 38 (1985) 295–298.
DOI: 10.1179/pom.1995.38.4.295
Google Scholar
[7]
J. Holmes, R.A. Queeney, Fatigue crack initiation in a porous steel, Powder Metall 28 (1985) 231–235.
DOI: 10.1179/pom.1985.28.4.231
Google Scholar
[8]
A. Bergmark, L. Alzati, U. Persson, Crack initiation and crack propagation in copper powder mixed PM steel, Powder Metallurgy Progress 2 (2002) 222-230.
Google Scholar
[9]
A. Gallo, S.A. Gallo, A. Vitiello, Steam oxidation of ferrous sintered parts: Contribution to study, Powder Metallurgy 46 (2003) 271-276.
DOI: 10.1179/003258903225008508
Google Scholar
[10]
M. Etaat, M. Emamy, M. Ghambari, E. Fadaei, Surface treatment and nickel plating of iron powder metallurgy parts for corrosion protection, Materials & Design 30 (2009) 3560–3565.
DOI: 10.1016/j.matdes.2009.02.029
Google Scholar
[11]
S.R.J. Saunders, M. Monteiro, F. Rizzo, The oxidation behaviour of metals and alloys at high temperatures, Progress in Materials Science 53 (2008) 775- 837.
DOI: 10.1016/j.pmatsci.2007.11.001
Google Scholar
[12]
P. Franklin, B.L. Davies: The effects of steam oxidation on porosity in sintered iron, Powder Metallurgy 20 (2001) 11–16.
DOI: 10.1179/pom.1977.20.1.11
Google Scholar
[13]
J. Mello, A. Binder, I. Klein, M. Hutchings, Effect of compaction pressure and powder grade on microstructure and hardness of steam oxidised sintered iron, Powder Metallurgy 44(1) (2013) 53-61.
DOI: 10.1179/003258901666176
Google Scholar
[14]
G. Straffelini, D. Trabucco, A. Molinari, Oxidative wear of heat-treated steels, Wear 250 (2001) 485-491.
DOI: 10.1016/s0043-1648(01)00661-5
Google Scholar
[15]
W.M. Silva, R. Binder, J. Mello, Abrasive wear of steam treated sintered iron, Wear 258 (2005) 166-177.
DOI: 10.1016/j.wear.2004.09.042
Google Scholar
[16]
M. Marin, F. Potecasu, E. Drugescu, O. Potecasu, Researches regarding the effect of steam oxidation on microstructure and wear behavior of sintered alloys, The Annals of Dunarea De Jos, University of Galati. Fascicle IX. Metallurgy And Materials Science (2013).
DOI: 10.35219/mms.2020.1.06
Google Scholar
[17]
J.D.B. De Mello, I. M. Hutchings, Effect of processing parameters on the surface durability of steam-oxidized sintered iron, Wear 250 (2001) 435-448.
DOI: 10.1016/s0043-1648(01)00632-9
Google Scholar
[18]
M. Marin, E. Drugescu, O. Potecasu, F. Potecasu, R. S. Cordeiro, Study of corrosion behavior for steam treated sintered iron powder, Metalurgia International, F.M.R., 15 (2010) 95-100.
Google Scholar
[19]
M. E. Fleet, The structure of magnetite: Symmetry of cubic spinels, Journal of Solid State Chemistry 62 (1986) 75–82.
DOI: 10.1016/0022-4596(86)90218-5
Google Scholar
[20]
G. Straffelini, A. Molinari, Dry sliding behaviour of steam treated sintered iron alloys, Wear 15 (1992) 127-134.
DOI: 10.1016/0043-1648(92)90294-i
Google Scholar
[21]
A. Molinari and G. Straffelini, Surface durability of steam treated sintered iron alloys, Wear 181 (1995) 334–338.
DOI: 10.1016/0043-1648(94)07052-0
Google Scholar
[22]
K.V. Sudhakar, P. Sampathkumaran, E. Dwarakadasa, Dry sliding wear in high density Fe–2% Ni based P/M alloys, Wear 242 (2000) 207–212.
DOI: 10.1016/s0043-1648(00)00422-1
Google Scholar
[23]
W.F. Wang, Effect of powder type and compaction pressure on the density, hardness and oxidation resistance of sintered and steam-treated steels, JMEPEG 16 (2007) 533–538.
DOI: 10.1007/s11665-007-9087-2
Google Scholar
[24]
K. Razavizadeh, B. Davies, Influence of powder type and density on pore closure and surface hardness microstructure and hardness of steam oxidized sintered iron, Powder Metall., 44(2001) 53–61.
DOI: 10.1179/pom.1979.22.4.187
Google Scholar