Comparison of Semidefinite Solvers for Topology Optimization of Cantilever Trusses Subject to Fundamental Eigenvalue Constraint

Article Preview

Abstract:

Optimal design of trusses is a widely developed field of structural optimization. In topology optimization the infinite design space is usually discretized into a finite ground structure defining the set of all feasible joints and bars. In this paper we adopt semidefinite programming (SDP) formulation of the topology optimization that enables us to obtain a globally optimal least compliant truss subjected to the constraints on structural volume and on the fundamental eigenvalue of free vibrations. For a model problem of 3D cantilever truss, we present a comparison of six solvers, namely CSDP, MOSEK, PENLAB, SDPA, SDPT3 and SeDuMi, from which it follows, that SDPA delivers the best computational performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-177

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Achtziger, M. Kočvara, Structural topology optimization with eigenvalues, SIAM Journal on Optimization 18. 4 (2007) 1129-1164.

DOI: 10.1137/060651446

Google Scholar

[2] W. Achtziger, M. Kočvara, On the maximization of the fundamental eigenvalue in topology optimization, Structural and Multidisciplinary Optimization 34. 3 (2007) 181-195.

DOI: 10.1007/s00158-007-0117-3

Google Scholar

[3] A. Ben-Tal, A. Nemirovski, Robust truss topology design via semidefinite programming, SIAM Journal on Optimization 7. 4 (1997) 991-1016.

DOI: 10.1137/s1052623495291951

Google Scholar

[4] M.P. Bendsøe, O. Sigmund, Topology optimization: Theory, methods and applications, second ed., Springer-Verlag Berlin Heidelberg, Berlin, (2004).

Google Scholar

[5] B. Borchers, CSDP, A C Library for Semidefinite Programming, Optimization Methods and Software 11. 1 (1999) 613-623.

DOI: 10.1080/10556789908805765

Google Scholar

[6] W. S. Dorn, R. E. Gomory, H. J. Greenberg, Automatic design of optimal structures, Journal de Mecanique 3 (1964) 25-52.

Google Scholar

[7] J. Fiala, M. Kočvara, M. Stingl, PENLAB: A MATLAB solver for nonlinear semidefinite optimization, arXiv preprint arXiv: 1311. 5240 (2013).

Google Scholar

[8] W.S. Hemp, Optimum structures, Clarendon Press, Oxford, (1973).

Google Scholar

[9] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 7. 1 (Revision 28), (2015).

Google Scholar

[10] M. Ohsaki, K. Fujisawa, N. Katoh, Y. Kanno, Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints, Computer Methods in Applied Mechanics and Engineering 180. 1 (1999) 203-217.

DOI: 10.1016/s0045-7825(99)00056-0

Google Scholar

[11] J. F. Sturm, Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11. 1-4 (1999) 625-653.

DOI: 10.1080/10556789908805766

Google Scholar

[12] K.C. Toh, M.J. Todd, R.H. Tutuncu, SDPT3 - a Matlab software package for semidefinite programming, Optimization Methods and Software, 11 (1999) 545-581.

DOI: 10.1080/10556789908805762

Google Scholar

[13] M. Yamashita, K. Fujisawa, M. Kojima, Implementation and evaluation of SDPA 6. 0 (semidefinite programming algorithm 6. 0), Optimization Methods and Software 18. 4 (2003) 491-505.

DOI: 10.1080/1055678031000118482

Google Scholar