[1]
N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf. 8 (2015) 12–35.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar
[2]
A. Simchi, Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features, Mater. Sci. Eng. A 428 (2006) 148–158.
DOI: 10.1016/j.msea.2006.04.117
Google Scholar
[3]
M. Mori, K. Yamanaka, S. Sato, K. Wagatsuma, A. Chiba, Microstructures and mechanical properties of biomedical Co-Cr-Mo alloys processed by hot rolling, Metall. Mater. Trans. A 43 (2012) 3108-3119.
DOI: 10.1007/s11661-012-1156-y
Google Scholar
[4]
T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys, Mat. Sci. Eng. A 243 (1998) 206–211.
Google Scholar
[5]
P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, A. Czyrska-Filemonowicz, Effects of thermal treatments on microstructure and mechanical properties of a Co–Cr–Mo–W biomedical alloy produced by laser sintering, J. Mech. Behav. Biomed. Mater. 60 (2016) 106-117.
DOI: 10.1016/j.jmbbm.2015.12.045
Google Scholar
[6]
P. Mengucci, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, A. Czyrska-Filemonowicz, G. Barucca, Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering, J. Mech. Behav. Biomed. Mater. 71 (2017) 1-9.
DOI: 10.1016/j.jmbbm.2017.02.025
Google Scholar
[7]
E. Girardin, G. Barucca, P. Mengucci, F. Fiori, E. Bassoli, A. Gatto, L. Iuliano, B. Rutkowski, Biomedical Co-Cr-Mo components produced by Direct Metal Laser Sintering, Mater. Today 3 (2016) 889–897.
DOI: 10.1016/j.matpr.2016.02.022
Google Scholar
[8]
L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater. 2 (2009) 20–32.
DOI: 10.1016/j.jmbbm.2008.05.004
Google Scholar
[9]
A.J. Saldıvar-Garcıa, A. Manı-Medrano, A. Salinas-Rodrıguez, Effect of solution treatments on the fcc/hcp isothermal martensitic transformation in Co–27Cr–5Mo–0.05C aged at 800°C, Scr. Mater. 40 (1999) 717–722.
DOI: 10.1016/s1359-6462(98)00489-8
Google Scholar
[10]
A.J. Saldıvar-Garcıa, A. Manı-Medrano, A. Salinas-Rodrıguez, Formation of hcp martensite during the isothermal ageing of an fcc Co–27Cr–5Mo–0.05C orthopaedic implant alloy, Met. Mater. Trans. A 30 (1999)1177–1184.
DOI: 10.1007/s11661-999-0267-6
Google Scholar
[11]
G. Barucca, E. Santecchia, G. Majni, E. Girardin E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, P. Mengucci, Structural characterization of biomedical Co–Cr–Mo components produced by direct metal laser sintering, Mat. Sci. Eng. C 48 (2015) 263–269.
DOI: 10.1016/j.msec.2014.12.009
Google Scholar
[12]
X.P. Tan, P. Wang, Y. Kok, W.Q. Toh, Z. Sun, S.M.L. Nai, M. Descoins, D. Mangelinck, E. Liu, S.B. Tor, Carbide precipitation characteristics in additive manufacturing of Co-Cr-Mo alloy via selective electron beam melting, Scr. Mater. 143 (2018) 117–121.
DOI: 10.1016/j.scriptamat.2017.09.022
Google Scholar
[13]
J.V. Giacchi, C.N. Morando, O. Fornaro, H.A. Palacio, Microstructural characterization of as-cast biocompatible Co–Cr–Mo alloys, Mater. Charact. 62 (2011) 53–61.
DOI: 10.1016/j.matchar.2010.10.011
Google Scholar