PVA and PVP Hydrogel Blends for Wound Dressing: Synthesis and Characterisation

Article Preview

Abstract:

The purpose of this study is the development and characterizations of novel polyvinyl alcohol (PVA)/polyvinyl pyrolidone (PVP) hydrogel blends. Different mixtures of the two polymeric solutions leaded to several hydrogels that were further characterized using X-ray difraction (XRD), differential thermal and thermogravimetric analysis (DTA/TGA) and Fourier transform infrared spectroscopy (FTIR). The influence of the polymer type on hydrogel hydration was also studied, by observing and comparing the samples after drying and rehydration in bidistilled water. The results revealed the maintenance of the amorphous character of the hydrogels after rehydration as well as a higher softening and decomposition temperature in direct relation with the increase of PVA content. The best wetting and swelling results were also given by the hydrogel with the highest PVA content prepared at pH 6.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Chen, B. Bilgen, R.A. Pareta, A.J. Myles, H. Fenniri, D.McK. Ciombor, R.K. Aaron, and T.J. Webster, Self-Assembled Rosette, Nanotube/Hydrogel Composites for Cartilage Tissue Engineering, Tissue Eng Part C Methods. 16 (2010) 1233-1243.

DOI: 10.1089/ten.tec.2009.0400

Google Scholar

[2] C. Xiao, G. Zhou, Synthesis and properties of degradable poly(vinyl alcohol) hydrogel, Polym Degrad Stab. 81 (2003) 297–301.

DOI: 10.1016/s0141-3910(03)00100-9

Google Scholar

[3] N.A. Peppas, E.W. Merrill, Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks, J. Appl. Polym. Sci. 21 (1977) 1763–1770.

DOI: 10.1002/app.1977.070210704

Google Scholar

[4] N.A. Peppas, E.W. Merrill. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications, J Biomed Mater Res. 11 (1977) 423–434.

DOI: 10.1002/jbm.820110309

Google Scholar

[5] T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modified release formulations, J Control Release. 119 (2007) 5–24.

DOI: 10.1016/j.jconrel.2007.01.004

Google Scholar

[6] M. Kokabi, M. Sirousazar, Z. Muhammad Hassan, PVA–clay nanocomposite hydrogels for wound dressing, Eur Polym J. 43 (2007) 773–781.

DOI: 10.1016/j.eurpolymj.2006.11.030

Google Scholar

[7] K.Y. Lee,  D.J. Mooney, Alginate: Properties and biomedical applications, Prog Polym Sci. 37 (2012) 106–126.

Google Scholar

[8] E. Kenawy, E.A. Kamoun, M.S. Mohy Eldin, M.A. El-Meligy, Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem. 7 (2014) 372–380.

DOI: 10.1016/j.arabjc.2013.05.026

Google Scholar

[9] L. Xinming, C. Yingde, A.W. Lloyd, S.V. Mikhalovsky, S.R. Sandeman, C.A. Howel,L. Liewen, Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: A review, Cont Lens Anterior Eye. 31 (2008) 57-64.

DOI: 10.1016/j.clae.2007.09.002

Google Scholar

[10] J.O. Kim, J.K. Park, J.H. Kim, S.G. Jin, C.S. Yonga, D.X. Li, , J.Y. Choi, J.S. Woo, B.K. Yoo, W.S. Lyoo, J.A. Kim, H.G. Choi, Development of polyvinyl alcohol–sodium alginate gelmatrix- based wound dressing system containing nitrofurazone. Int J Pharm. 359 (2008) 79–86.

DOI: 10.1016/j.ijpharm.2008.03.021

Google Scholar

[11] J. HoonSung, Ma-Ro.Hwang, J. OhKim, J. HoonLee, Y. Kim, J. HoonKim, S. WooChang, S. GiuJin, J. AeKim, W. SeokLyoo, S. SooHan, S. KwangKu, C. SoonYong, Han-Gon, Choi, Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan, Int J Pharm. 392 (2010) 232-240.

DOI: 10.1016/j.ijpharm.2010.03.024

Google Scholar

[12] J. Thomas, A. Lowman, M. Marcolongo, Novel associated hydrogels for nucleus pulposus replacement, Journal Biomed Mater Res A. 67 (2003) 1329–1337.

DOI: 10.1002/jbm.a.10119

Google Scholar

[13] S.O. Rogero, S.M. Malmonge, A.B. Lugão, T.I. Ikeda, L. Miyamaru, and Á.S. Cruz, Biocompatibility Study of Polymeric Biomaterials, J Artif Organs. 27 (2003) 424–427.

DOI: 10.1046/j.1525-1594.2003.07249.x

Google Scholar

[14] H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Characterization of poly(vinyl alcohol)/ poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer. 45 (2004) 7193-7202.

DOI: 10.1016/j.polymer.2004.08.036

Google Scholar

[15] E.M. Abdelrazek, I.S. Elashmawi, S. Labeeb, Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films, Physica B. 405 (2010) 2021–(2027).

DOI: 10.1016/j.physb.2010.01.095

Google Scholar