Catalytic Activity of Silver Metal Supported on Doped Graphene in Alkaline Medium for Oxygen Reduction Reaction

Article Preview

Abstract:

The platinum (Pt) degradation, poisoning and carbon corrosion in acidic fuel cell has led to explore the research in alkaline fuel cell. However, the high cost of Pt has brought a lot of studies to find replacement for Pt catalyst. Due to that, silver metal is selected as non-Pt catalyst and supported by the nitrogen and phosphorus-doped on graphene for oxygen reduction reaction in alkaline medium. The adsorption energy and mechanism of the oxygen reduction reaction is studied by using density functional theory (DFT) calculation. The support catalyst of graphene is doped with three atom nitrogen and phosphorus namely as N3 and P3, respectively. The Ag supported on N3 and P3 are tested on O2, OOH, O and OH species. There are two types adsorption of O2 on N3 and P3 which is side and end-on adsorption configuration. The N3-Ag has similar adsorption energy for both configurations, but P3-Ag has low adsorption energy by end-on adsorption configuration. The effect of doped atoms on graphene also have been tested on O2, OOH, O and OH species. The result shows that increasing nitrogen doping atom has decreased the adsorption energy of O2 and vice versa on phosphorus atoms. A single phosphorus doping atom on graphene has shown the lowest adsorption energy, but the end-on configuration of P3-Ag has shown most stable adsorption. The schematic free energy profile shows that both N3-Ag and P3-Ag have high possibilities to be followed in oxygen reduction reaction mechanism but P3-Ag has advantage due to stable adsorption as non-Pt catalyst. The Ag metal supported on nitrogen and phosphorus-doped graphene show promising result to be a catalyst in alkaline fuel cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-69

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Li, H. Lv, Y. Kang, N.M. Markovic, V.R. Stamenkovic, Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells, Annual Review of Chemical and Biomolecular Engineering, 7 (2016) 509-532.

DOI: 10.1146/annurev-chembioeng-080615-034526

Google Scholar

[2] T. Gunji, R.H. Wakabayashi, S.H. Noh, B. Han, F. Matsumoto, F.J. DiSalvo, H.D. Abruña, The effect of alloying of transition metals (M = Fe, Co, Ni) with palladium catalysts on the electrocatalytic activity for the oxygen reduction reaction in alkaline media, Electrochimica Acta, 283 (2018) 1045-1052.

DOI: 10.1016/j.electacta.2018.06.051

Google Scholar

[3] C. Sealy, The problem with platinum, Materials Today, 11 (2008) 65-68.

Google Scholar

[4] K. Nose, T.H. Okabe, Platinum Group Metals Production, in: S. Seetharaman (Eds.), Treatise on Process Metallurgy, Elsevier, 2014, p.1071 – 1097.

DOI: 10.1016/b978-0-08-096988-6.00018-3

Google Scholar

[5] N. Gavrilov, M. Momčilović, A.S. Dobrota, D.M. Stanković, B. Jokić, B. Babić, N.V. Skorodumova, S.V. Mentus, I.A. Pašti, A study of ordered mesoporous carbon doped with Co and Ni as a catalyst of oxygen reduction reaction in both alkaline and acidic media, Surface and Coatings Technology, 349 (2018) 511-521.

DOI: 10.1016/j.surfcoat.2018.06.008

Google Scholar

[6] B.B. Blizanac, P.N. Ross, N.M. Marković, Oxygen Reduction on Silver Low-Index Single-Crystal Surfaces in Alkaline Solution:  Rotating Ring DiskAg(hkl) Studies, The Journal of Physical Chemistry B, 110 (2006) 4735-4741.

DOI: 10.1021/jp056050d

Google Scholar

[7] H.-K. Lee, J.-P. Shim, M.-J. Shim, S.-W. Kim, J.-S. Lee, Oxygen reduction behavior with silver alloy catalyst in alkaline media, Materials Chemistry and Physics, 45 (1996) 238-242.

DOI: 10.1016/0254-0584(95)01738-0

Google Scholar

[8] L. Xin, Z. Zhang, Z. Wang, J. Qi, W. Li, Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell, Frontiers in Chemistry, 1 (2013) 1 - 5.

DOI: 10.3389/fchem.2013.00016

Google Scholar

[9] Q. Tang, L. Jiang, J. Qi, Q. Jiang, S. Wang, G. Sun, One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media, Applied Catalysis B: Environmental, 104 (2011) 337-345.

DOI: 10.1016/j.apcatb.2011.03.007

Google Scholar

[10] E. Gülzow, N. Wagner, M. Schulze, Preparation of Gas Diffusion Electrodes with Silver Catalysts for Alkaline Fuel Cells, Fuel Cells, 3 (2003) 67-72.

DOI: 10.1002/fuce.200320221

Google Scholar

[11] S. Liu, M.G. White, P. Liu, Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study, ChemCatChem, 10 (2018) 540-549.

DOI: 10.1002/cctc.201701539

Google Scholar

[12] X. Chen, R. Hu, F. Sun, Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability, Journal of Renewable and Sustainable Energy, 10 (2018) 054301-1 – 054301-6.

DOI: 10.1063/1.5044470

Google Scholar

[13] J. Zhang, Y. Li, Y. Zhang, M. Chen, L. Wang, C. Zhang, H. He, Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation, Scientific Reports, 5 (2015) 1 - 10.

DOI: 10.1038/srep12950

Google Scholar

[14] A. Marinoiu, M. Raceanu, E. Carcadea, M. Varlam, Iodine-doped graphene – Catalyst layer in PEM fuel cells, Applied Surface Science, 456 (2018) 238-245.

DOI: 10.1016/j.apsusc.2018.06.100

Google Scholar

[15] A. Bayrakçeken Yurtcan, E. Daş, Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells, International Journal of Hydrogen Energy, 43 (2018) 18691- 18701.

DOI: 10.1016/j.ijhydene.2018.06.186

Google Scholar

[16] B. Li, Z. Yan, D.C. Higgins, D. Yang, Z. Chen, J. Ma, Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells, Journal of Power Sources, 262 (2014) 488-493.

DOI: 10.1016/j.jpowsour.2014.04.004

Google Scholar

[17] M. Watanabe, H. Yano, H. Uchida, D.A. Tryk, Achievement of distinctively high durability at nanosized Pt catalysts supported on carbon black for fuel cell cathodes, Journal of Electroanalytical Chemistry, 819 (2018) 359-364.

DOI: 10.1016/j.jelechem.2017.11.017

Google Scholar

[18] I.H. Lee, J. Cho, K.H. Chae, M.K. Cho, J. Jung, J. Cho, H.J. Lee, H.C. Ham, J.Y. Kim, Polymeric graphitic carbon nitride nanosheet-coated amorphous carbon supports for enhanced fuel cell electrode performance and stability, Applied Catalysis B: Environmental, 237 (2018) 318-326.

DOI: 10.1016/j.apcatb.2018.05.081

Google Scholar

[19] C. Luo, H. Xie, Q. Wang, G. Luo, C. Liu, A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells, Journal of Nanomaterials, 2015 (2015) 1- 10.

DOI: 10.1155/2015/560392

Google Scholar

[20] N.A. Karim, S.K. Kamarudin, Novel heat-treated cobalt phthalocyanine/carbon-tungsten oxide nanowires (CoPc/C-W18O49) cathode catalyst for direct methanol fuel cell, Journal of Electroanalytical Chemistry, 803 (2017) 19-29.

DOI: 10.1016/j.jelechem.2017.08.050

Google Scholar

[21] R. Akbarzadeh, M. Ghaedi, S. Nasiri Kokhdan, R. Jannesar, F. Sadeghfar, F. Sadri, L. Tayebi, Electrochemical hydrogen storage, photocatalytical and antibacterial activity of FeAg bimetallic nanoparticles supported on TiO2 nanowires, International Journal of Hydrogen Energy, 43 (2018) 18316-18329.

DOI: 10.1016/j.ijhydene.2018.07.175

Google Scholar

[22] F. Dundar, A. Uzunoglu, A. Ata, K.J. Wynne, Durability of carbon–silica supported catalysts for proton exchange membrane fuel cells, Journal of Power Sources, 202 (2012) 184-189.

DOI: 10.1016/j.jpowsour.2011.12.010

Google Scholar

[23] K. Nam, S. Lim, S.-K. Kim, S.-H. Yoon, D.-H. Jung, Application of silica as a catalyst support at high concentrations of methanol for direct methanol fuel cells, International Journal of Hydrogen Energy, 37 (2012) 4619-4626.

DOI: 10.1016/j.ijhydene.2011.05.068

Google Scholar

[24] N. Abdullah, S.K. Kamarudin, L.K. Shyuan, N.A. Karim, Synthesis and optimization of PtRu/TiO2-CNF anodic catalyst for direct methanol fuel cell, International Journal of Hydrogen Energy, (2018) In Press, Corrected Proof.

DOI: 10.1016/j.ijhydene.2018.05.042

Google Scholar

[25] J. Nag, K. Rawat, K. Asokan, D. Kanjilal, H.B. Bohidar, Zener diode behavior of nitrogen-doped graphene quantum dots, Physica E: Low-dimensional Systems and Nanostructures, 104 (2018) 36-41.

DOI: 10.1016/j.physe.2018.06.010

Google Scholar

[26] X.J. Lee, B.Y.Z. Hiew, K.C. Lai, L.Y. Lee, S. Gan, S. Thangalazhy-Gopakumar, S. Rigby, Review on graphene and its derivatives: Synthesis methods and potential industrial implementation, Journal of the Taiwan Institute of Chemical Engineers, 98 (2019) 163-180.

DOI: 10.1016/j.jtice.2018.10.028

Google Scholar

[27] M.Z. Iqbal, A. Rehman, S. Siddique, Prospects and challenges of graphene based fuel cells, Journal of Energy Chemistry, 39 (2019) 217 – 234.

DOI: 10.1016/j.jechem.2019.02.009

Google Scholar

[28] D. Ion-Ebrasu, B.G. Pollet, A. Spinu-Zaulet, A. Soare, E. Carcadea, M. Varlam, S. Caprarescu, Graphene modified fluorinated cation-exchange membranes for proton exchange membrane water electrolysis, International Journal of Hydrogen Energy, 44 (2019) 10190-10196.

DOI: 10.1016/j.ijhydene.2019.02.148

Google Scholar

[29] E. Urbańczyk, A. Maciej, A. Stolarczyk, M. Basiaga, W. Simka, The electrocatalytic oxidation of urea on nickel-graphene and nickel-graphene oxide composite electrodes, Electrochimica Acta, 305 (2019) 256 – 263.

DOI: 10.1016/j.electacta.2019.03.045

Google Scholar

[30] R. Gimenez, S. Barrionuevo, C.L.A. Berli, F.J. Ibañez, M.G. Bellino, Water-graphene environment modulated by coupled nanopore interplay, Materials Chemistry and Physics, 232 (2019) 382-386.

DOI: 10.1016/j.matchemphys.2019.05.005

Google Scholar

[31] M.M. Alrashed, M.D. Soucek, S.C. Jana, Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings, Progress in Organic Coatings, 134 (2019) 197 – 208.

DOI: 10.1016/j.porgcoat.2019.04.057

Google Scholar

[32] G.A. Nemnes, T.L. Mitran, A. Manolescu, D. Dragoman, Electric and thermoelectric properties of graphene bilayers with extrinsic impurities under applied electric field, Physica B: Condensed Matter, 561 (2019) 9 – 15.

DOI: 10.1016/j.physb.2019.02.044

Google Scholar

[33] T. Mahmoudi, Y. Wang, Y-B. Hahn, Graphene and its derivatives for solar cells application, Nano Energy, 47 (2018) 56 – 65.

DOI: 10.1016/j.nanoen.2018.02.047

Google Scholar

[34] A. Marinoiu, M. Raceanu, E. Carcadea, M. Varlam, D. Balan, Dan. Ion-Ebrasu, I. Stefanescu and M. Enachescu, Iodine-Doped Graphene for Enhanced Electrocatalytic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications, Journal of Electrochemical Energy Conversion and Storage, 14 (2017) 1-9.

DOI: 10.1115/1.4036684

Google Scholar

[35] M. An, C. Du, L. Du, Y. Sun, Y. Wang, C. Chen, G. Han, G. Yin, Y. Gao, Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles, Chemical Physics Letters, 687 (2017) 1-8.

DOI: 10.1016/j.cplett.2017.08.058

Google Scholar

[36] J.M. Linge, H. Erikson, A. Sarapuu, M. Merisalu, M. Rähn, L. Matisen, V. Sammelselg, K. Tammeveski, Electroreduction of oxygen on nitrogen-doped graphene oxide supported silver nanoparticles, Journal of Electroanalytical Chemistry, 794 (2017) 197-203.

DOI: 10.1016/j.jelechem.2017.04.022

Google Scholar

[37] K. Chu, F. Wang, Y. Tian, Z. Wei, Phosphorus doped and defects engineered graphene for improved electrochemical sensing: synergistic effect of dopants and defects, Electrochimica Acta, 231 (2017) 557-564.

DOI: 10.1016/j.electacta.2017.02.099

Google Scholar

[38] K. Zhang, X. Chen, L. Wang, D. Zhang, Z. Xue, X. Zhou, X. Lu, PtPd nanoparticles supported on sulfonated nitrogen sulfur co-doped graphene for methanol electro-oxidation, International Journal of Hydrogen Energy, 43 (2018) 15931-15940.

DOI: 10.1016/j.ijhydene.2018.06.157

Google Scholar

[39] X. Wang, Y. Liu, P. Wu, Water-soluble triphenylphosphine-derived microgel as the template towards in-situ nitrogen, phosphorus co-doped mesoporous graphene framework for supercapacitor and electrocatalytic oxygen reduction, Chemical Engineering Journal, 328 (2017) 417-427.

DOI: 10.1016/j.cej.2017.07.064

Google Scholar

[40] M. Borghei, N. Laocharoen, E. Kibena-Põldsepp, L.-S. Johansson, J. Campbell, E. Kauppinen, K. Tammeveski, O.J. Rojas, Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells, Applied Catalysis B: Environmental, 204 (2017) 394-402.

DOI: 10.1016/j.apcatb.2016.11.029

Google Scholar

[41] H.-R. Liu, H. Xiang, X.G. Gong, First principles study of adsorption of O2 on Al surface with hybrid functionals, The Journal of Chemical Physics, 135 (2011) 214702-1 – 214702-5.

DOI: 10.1063/1.3665032

Google Scholar

[42] N.A. Karim, S.K. Kamarudin, L.K. Shyuan, Z. Yaakob, W.R.W. Daud, A.A.H. Khadum, Novel cathode catalyst for DMFC: Study of the density of states of oxygen adsorption using density functional theory, International Journal of Hydrogen Energy, 39 (2014) 17295-17305.

DOI: 10.1016/j.ijhydene.2014.06.110

Google Scholar

[43] L. Feng, Y. Liu, J. Zhao, Fe– and Co–P4-embedded graphenes as electrocatalysts for the oxygen reduction reaction: theoretical insights, Physical Chemistry Chemical Physics, 17 (2015) 30687-30694.

DOI: 10.1039/c5cp05551b

Google Scholar

[44] P. Zhang, B.B. Xiao, X.L. Hou, Y.F. Zhu, Q. Jiang, Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction, Scientific Reports, 4 (2014) 1 - 8.

DOI: 10.1038/srep03821

Google Scholar

[45] X. Chen, F. Li, X. Wang, S. Sun, D. Xia, Density Functional Theory Study of the Oxygen Reduction Reaction on a Cobalt–Polypyrrole Composite Catalyst, The Journal of Physical Chemistry C, 116 (2012) 12553-12558.

DOI: 10.1021/jp300638e

Google Scholar

[46] Y. Sha, T.H. Yu, B.V. Merinov, W.A. Goddard, DFT Prediction of Oxygen Reduction Reaction on Palladium–Copper Alloy Surfaces, ACS Catalysis, 4 (2014) 1189-1197.

DOI: 10.1021/cs4009623

Google Scholar

[47] J. Liu, X. Fan, C. Sun, W. Zhu, DFT Study on Intermetallic Pd–Cu Alloy with Cover Layer Pd as Efficient Catalyst for Oxygen Reduction Reaction, Materials, 11 (2018) 1 - 11.

DOI: 10.3390/ma11010033

Google Scholar

[48] B.B. Xiao, X.B. Jiang, Q. Jiang, Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst, Physical Chemistry Chemical Physics, 18 (2016) 14234-14243.

DOI: 10.1039/c6cp01066k

Google Scholar

[49] S. Kattel, Z. Duan, G. Wang, Density Functional Theory Study of an Oxygen Reduction Reaction on a Pt3Ti Alloy Electrocatalyst, The Journal of Physical Chemistry C, 117 (2013) 7107-7113.

DOI: 10.1021/jp400158r

Google Scholar