Synthesis of SnO2 Nanoparticles Using Ficus religiosa Leaf Extract and their Application in Fabrication of OFETs for Glucose Monitoring

Article Preview

Abstract:

Organic field effect transistors (OFETs) as a sensor have gained interest of researchers due to its portable size and less expensive design in the field of medical diagnostic, food monitoring, chemical detection, wearable sensors, etc. In this present research work, we demonstrate the fabrication of OFETs from organic-inorganic SnO2 nanoparticles tailored pentacenefor glucose detection. SnO2 nanoparticles were synthesized bygreen method using Ficus religiosa leaf extract. The as-synthesized SnO2 NPs with cassiterite crystal structure was analysed using X-Ray Diffraction (XRD) and the energy bandgap of ~3.8 eV was calculated using Tauc relation with absorption spectra so obtained from UV-vis spectroscopy (UV-vis). The structure and morphological analysis of SnO2 NPs with size of ~15 nm was confirmed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) analysis. The sensor characteristics of OFET device fabricated using pentacene layer (soluble pentacene precursor of DMP) and as-synthesized SnO2 nanoparticles confirmed the aqueous glucose (glucose in water) detection at room temperature (27 °C). The extracted electrical parameters such as mobility (μ), On-current (Ion), saturation current (IDsat) and the sensor response were discussed to support the sensor characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-77

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Can Dincer et.al, Disposable Sensors in Diagnostics, Food, and Environmental Monitoring, Adv. Mater. 1806739 (2019) 1-28.

Google Scholar

[2] Makaram P, Owens D, Aceros J, Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies, Diagnostics (Basel). 4(2) (2014) 27-46.

DOI: 10.3390/diagnostics4020027

Google Scholar

[3] Coyle S,Curto V.F, Benito-Lopez F, Florea L, Diamond D, Wearable Sensors Elsevier Inc.; Amsterdam, The Netherlands: Wearable bio and chemical sensors, (2014), p.65–83.

DOI: 10.1016/b978-0-12-418662-0.00002-7

Google Scholar

[4] Ferrante do,Amaral CE, Wolf B, Current development in non-invasive glucose monitoring,Med Eng Phys.30(5) (2008) 541-9.

DOI: 10.1016/j.medengphy.2007.06.003

Google Scholar

[5] Thevenot D.R,Toth K, Durst R.A, Wilson G.S., Electrochemical biosensors: recommended definitions and classification, BiosensBioelectron. 16 (2001) 121–131.

Google Scholar

[6] Scognamiglio V,Arduini F,Palleschi G, Rea G, Biosensing technology for sustainable food safety,Trends Anal Chem. 62 (2014) 1–10.

DOI: 10.1016/j.trac.2014.07.007

Google Scholar

[7] Arduini F, Ricci F,Tuta C.S, Moscone D, Amine A, Palleschi G, Detection of carbamic and organophosphorus pesticides in water samples using cholinesterase biosensor based on Prussian blue modified screen printed electrode, Anal ChimActa. 58 (2006) 155–162.

DOI: 10.1016/j.aca.2006.07.052

Google Scholar

[8] Yan Zhou, Xiao Ni, Zhen Ren, Jiayi Ma, Jinzhong Xu and Xiaojun Chen, A flower-like NiO–SnO2 nanocomposite and its non-enzymatic catalysis of glucose, RSC Adv.7 (2016) 45177.

DOI: 10.1039/c7ra07582k

Google Scholar

[9] Saito M, Uchida N, Furutani S, Murahashi M, Espulgar W, Nagatani N, Nagai H, Inoue Y, Ikeuchi T, Kondo S et al., Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents, Microsyst. Nanoeng. 4 (2018) 1–11.

DOI: 10.1038/micronano.2017.83

Google Scholar

[10] Buzea C Pacheco, I.I Robbie K, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases. 2 (2007) 17–71.

DOI: 10.1116/1.2815690

Google Scholar

[11] Rocha-Santos T.A.P, Sensors and biosensors based on magnetic nanoparticles, TrAC Trends Anal. Chem. 62 (2014) 28–36.

DOI: 10.1016/j.trac.2014.06.016

Google Scholar

[12] Ray SC, Jana NR, Carbon Nanomaterials for Biological and Medical Applications Elsevier: Amsterdam, the Netherlands (2017).

Google Scholar

[13] D'Costa, EJ Higgins, IJ Turner A.P,Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor, Biosensors. 2 (1986) 71–87.

DOI: 10.1016/0265-928x(86)80011-6

Google Scholar

[14] Slein MW, D-glucose: Determination with hexokinase and glucose-6-phosphate dehydrogenase, Academic Press; New York USA, (1963) p.117.

Google Scholar

[15] Heller A, Feldman B, Electrochemical glucose sensors and their applications in diabetes management, Chem. Rev. 108 (2008) 2482–2505.

DOI: 10.1021/cr068069y

Google Scholar

[16] Luo L, Li F, Zhu L, Ding Y, Zhang Z, Deng D, Lu B, Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode, Colloid Surf. B Biointerfaces. 102 (2013) 307–311.

DOI: 10.1016/j.colsurfb.2012.08.003

Google Scholar

[17] Soomro RA,  Ibupoto ZH, Sirajuddin S, Sherazi TH,  Abro MI, WillanderM, Practice of diclofenac sodium for the hydrothermal growth of NiO nanostructures and their application for enzyme free glucose biosensor, Microsyst. Technol. 22 (2016) 2549-2557.

DOI: 10.1007/s00542-015-2669-2

Google Scholar

[18] Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente, Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv. Mater. 10 (2009) 49–53.

DOI: 10.1002/(sici)1521-4095(199801)10:1<49::aid-adma49>3.0.co;2-r

Google Scholar

[19] Lee YH, Jang M, Lee MY, Kweon OY, Oh JH, Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules, Chem. 3(5) (2017) 724–763.

DOI: 10.1016/j.chempr.2017.10.005

Google Scholar

[20] Zhang C, Chen P, Hu W, Organic field-effect transistor-based gas sensors. ChemSoc Rev., 44(8) (2015) 2087–2107.

DOI: 10.1039/c4cs00326h

Google Scholar

[21] Baik NS, Sakai G, Shimanoe K, Miura N, Yamazoe N, Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sensors and Actuators, B: Chemical, 65(1) (2000) 97-100.

DOI: 10.1016/s0925-4005(99)00403-7

Google Scholar

[22] Leite ER, Weber IT, Longo E, Varela, JA, A new method to control particle size distribution of SnO2 nanoparticles for gas sensor applications. J. Adv. Mater., 12(13) (2000) 965 – 968.

DOI: 10.1002/1521-4095(200006)12:13<965::aid-adma965>3.0.co;2-7

Google Scholar

[23] Viala E, Colliere V, Fau P, Senocq F, Maisonnat A, Chaudret B, Synthesis and use of a novel SnO2 nanomaterial for gas sensing. Appl Surf Sci., 164 (2000) 219-226.

DOI: 10.1016/s0169-4332(00)00340-8

Google Scholar

[24] Dhobale S, Joshee P, Deore G, Laware SL, Kale SN, Nanostructured glucose-oxidase immobilized SnO2 thin films for glucose sensing.App Phys Lett., 98(7) (2011) 073704.

DOI: 10.1063/1.3555460

Google Scholar

[25] Madan HR. et al., Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: Their antibacterial, antioxidant, photoluminescent and photocatalytic properties. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 152 (2016) 404–416.

DOI: 10.1016/j.saa.2015.07.067

Google Scholar

[26] Gnanam S, Rajendran V,Luminescence properties of Eg-assisted SnO2nanoparticles by sol-gel process.Dig. J Nanometer Bios.,5 (2010), 699–704.

Google Scholar

[27] Kuppusamy P, Yusoff MM, Maniam GP, Govindan N, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharma J, 24(4) (2016) 473–484.

DOI: 10.1016/j.jsps.2014.11.013

Google Scholar

[28] Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A, Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3) (2018) 93.

DOI: 10.3390/medicines5030093

Google Scholar

[29] Selvakumari JC, Ahila M, Malligavathy M. et al., Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach. Int J Miner MetallMater., 24 (2017) 1043–1051.

DOI: 10.1007/s12613-017-1494-2

Google Scholar

[30] Chamoli P, Sharma R, Das MK, Kar KK, Mangifera indica, Ficus religiosa and Polyalthialongifolia leaf extract-assisted green synthesis of graphene for transparent highly conductive film.RSC Adv., 6(98) (2016) 96355–96366.

DOI: 10.1039/c6ra19111h

Google Scholar

[31] Rodriguez-Clemente R, Lopez-Macipe A, Gomez-Morales J, Torrent-Burgues J,Castano VM, Hydroxyapatite precipitation: A case of nucleation-aggregation-agglomeration-growth mechanism. J. Eur. Ceram. Soc., 18(9) (1998) 1351–1356.

DOI: 10.1016/s0955-2219(98)00064-8

Google Scholar

[32] Kamble VB, Umarji AM, Achieving selectivity from the synergistic effect of Cr and Pt activated SnO2 thin film gas sensors. Sensors and Actuators B: Chemical, 236 (2016) 208-17.

DOI: 10.1016/j.snb.2016.05.119

Google Scholar

[33] Ozge A et.al.,Preparation of Nanosized tin Oxide (SnO2) Powder by Homogeneous PrecipitationCeramics Int., 33(4) (2007) 537-542.

DOI: 10.1016/j.ceramint.2005.10.024

Google Scholar

[34] Surya SG, Ashwath BSN, Mishra S, A.R.B, K, Sastry, A. B, B.L.V, P, Rao, V. R, H 2 S detection using low-cost SnO2 nano-particle Bi-layer OFETs. Sensors and Actuators B: Chemical, 235 (2016) 378-385.

DOI: 10.1016/j.snb.2016.05.096

Google Scholar

[35] Ochiai S, Palanisamy K, Kannappan S, Shin PK, Pentacene Active Channel Layers Prepared by Spin-Coating and Vacuum Evaporation Using Soluble Precursors for OFET Applications. ISRN Condensed Matter Physics, (2012), p.1–7.

DOI: 10.5402/2012/313285

Google Scholar

[36] Ashwath Narayana, Sannaki Uday Kumar, Nazia Tarannum, S. V. Lokesh, High Performance Room Temperature Ethanol Detection Using Organic Field Effect Transistors Based on Polymer and Low Cost SnO2 Nanoparticles Synthesized from Aegle Marmelos Fruit, Sensor Letters, 17(8) (2019) 581-586.

DOI: 10.1166/sl.2019.4113

Google Scholar

[37] Liu J, Agarwal M, Varahramyan K, Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer Sensors and Actuators B: Chemical 135(1) (2008) 195–199.

DOI: 10.1016/j.snb.2008.08.009

Google Scholar

[38] Jung DUJ, Ahmad R, Hahn Y B, Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. Journal of Colloid and Interface Science, 512 (2018) 21-28.

DOI: 10.1016/j.jcis.2017.10.037

Google Scholar

[39] Elkington D, Belcher WJ, Dastoor PC, Zhou XJ, Detection of saliva-range glucose concentrations using organic thin-film transistors. Applied Physics Letters, 105(4) (2014) 043303.

DOI: 10.1063/1.4892012

Google Scholar

[40] Ahmad R, Ahn MS, Hahn YB, Fabrication of a non-enzymatic glucose sensor field-effect transistor based on vertically-oriented ZnO nanorods modified with Fe2O3.Electrochemistry Communications, 77 (2017) 107–111.

DOI: 10.1016/j.elecom.2017.03.006

Google Scholar

[41] You X, Pak JJ, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sensors and Actuators B: Chemical, 202 (2014) 1357–1365.

DOI: 10.1016/j.snb.2014.04.079

Google Scholar