[1]
Z. Qin, B. Li, R. Chen, H. Zhang, H. Xue, C. Yao, L. Tan, Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys, International Journal of Fatigue 168 (2023) 107429.
DOI: 10.1016/j.ijfatigue.2022.107429
Google Scholar
[2]
E. Qin, G. Chen, Z. Tan, S. Wu, Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel, Journal of Materials Engineering and Performance 24(11) (2015) 4578-4583.
DOI: 10.1007/s11665-015-1761-1
Google Scholar
[3]
J. Wu, J. Zhao, H. Qiao, X. Hu, Y. Yang, Research on the technical principle and typical applications of laser shock processing, Materials Today: Proceedings 44 (2021) 722-731.
DOI: 10.1016/j.matpr.2020.10.618
Google Scholar
[4]
X.Y. Wang, Z.H. Li, Y.K. Bai, X.Y. Cao, T.G. Liu, Y.H. Lu, T. Shoji, Insights into the SCC crack tip of Alloy 690TT in caustic solution at high temperature, Journal of Nuclear Materials 553 (2021) 153034.
DOI: 10.1016/j.jnucmat.2021.153034
Google Scholar
[5]
A.G. Sanchez, C. You, M. Leering, D. Glaser, D. Furfari, M.E. Fitzpatrick, J. Wharton, P.A.S. Reed, Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651, International Journal of Fatigue 143 (2021) 106025.
DOI: 10.1016/j.ijfatigue.2020.106025
Google Scholar
[6]
S.J. Lainé, K.M. Knowles, P.J. Doorbar, R.D. Cutts, D. Rugg, Microstructural characterisation of metallic shot peened and laser shock peened Ti–6Al–4V, Acta Materialia 123 (2017) 350-361.
DOI: 10.1016/j.actamat.2016.10.044
Google Scholar
[7]
E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718, Materials Science and Engineering: A 810 (2021) 141029.
DOI: 10.1016/j.msea.2021.141029
Google Scholar
[8]
X. Luo, N. Dang, X. Wang, The effect of laser shock peening, shot peening and their combination on the microstructure and fatigue properties of Ti-6Al-4V titanium alloy, International Journal of Fatigue 153 (2021) 106465.
DOI: 10.1016/j.ijfatigue.2021.106465
Google Scholar
[9]
S. Zou, J. Wu, Y. Zhang, S. Gong, G. Sun, Z. Ni, Z. Cao, Z. Che, A. Feng, Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots, Surface and Coatings Technology 347 (2018) 398-406.
DOI: 10.1016/j.surfcoat.2018.05.023
Google Scholar
[10]
X. Ren, B. Chen, J. Jiao, Y. Yang, W. Zhou, Z. Tong, Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage, Optics & Laser Technology 121 (2020) 105784.
DOI: 10.1016/j.optlastec.2019.105784
Google Scholar
[11]
C. Lin, H. Wu, Z. Li, L. Yu, J. Zeng, C. Xia, Y. Liao, H. Xu, Y. Zhang, Evaluation of oblique laser shock peening effect of FGH95 superalloy turbine disk material, Materials Today Communications 31 (2022) 103534.
DOI: 10.1016/j.mtcomm.2022.103534
Google Scholar
[12]
L. Hackel, J. Fuhr, M. Sharma, J. Rankin, V. Sherman, K. Davami, Test Results for Wrought and AM In718 Treated by Shot Peening and Laser Peening Plus Thermal Microstructure Engineering, Procedia Structural Integrity 19 (2019) 452-462.
DOI: 10.1016/j.prostr.2019.12.049
Google Scholar
[13]
K. Ding, L. Ye, Laser Shock Peening Performance and Process Simulation, Woodhead Publish Limited, Cambridge, 2006.
Google Scholar
[14]
C. Cellard, D. Retraint, M. François, E. Rouhaud, D. Le Saunier, Laser shock peening of Ti-17 titanium alloy: Influence of process parameters, Materials Science and Engineering: A 532 (2012) 362-372.
DOI: 10.1016/j.msea.2011.10.104
Google Scholar
[15]
J.Z. Lu, L.J. Wu, G.F. Sun, K.Y. Luo, Y.K. Zhang, J. Cai, C.Y. Cui, X.M. Luo, Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts, Acta Materialia 127 (2017) 252-266.
DOI: 10.1016/j.actamat.2017.01.050
Google Scholar
[16]
P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartnicki, Experimental study of laser-driven shock waves in stainless steels, Journal of Applied Physics 84(11) (1998) 5985-5992.
DOI: 10.1063/1.368894
Google Scholar
[17]
R. Fabbro, P. Peyre, L. Berthe, X. Scherpereel, Physics and applications of laser-shock processing, Journal of Laser Applications 10(6) (1998) 265-279.
DOI: 10.2351/1.521861
Google Scholar
[18]
V.K. Caralapatti, S. Narayanswamy, Effect of high repetition laser shock peening on biocompatibility and corrosion resistance of magnesium, Optics & Laser Technology 88 (2017) 75-84.
DOI: 10.1016/j.optlastec.2016.09.003
Google Scholar
[19]
M. Yoda, B. Newton, Underwater laser peening, The 8th International EPRI Conference, Florida, 2008.
Google Scholar
[20]
T.M. Ahn, Long-term initiation time for stress -corrosion cracking of alloy 600 with implications in stainless steel: Review and analysis for nuclear application, Progress in Nuclear Energy 137 (2021) 103760.
DOI: 10.1016/j.pnucene.2021.103760
Google Scholar
[21]
D. Feron, R. Staehle, Stress Corrosion Cracking of Nickel-based Alloys in Water-cooled Nuclear Reactors, Woodhead Publishing Series in EFC, Woodhead Publishing, 2016.
DOI: 10.1016/b978-0-08-100049-6.09002-9
Google Scholar
[22]
A. Telang, A.S. Gill, S. Teysseyre, S.R. Mannava, D. Qian, V.K. Vasudevan, Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution, Corrosion Science 90 (2015) 434-444.
DOI: 10.1016/j.corsci.2014.10.045
Google Scholar
[23]
E. Qin, L. Liu, C. Liu, H. Lu, S. Wu, Laser shock peening process with low pulse energy of 316L stainless steel, Heat Treatment of Metals 47(9) (2022) 92-97.
Google Scholar
[24]
E. Qin, W. Li, H. Lu, S. Yin, C. Liu, S. Wu, The FEM simulation on the low-energy laser shock peening in martensitic stainless steel, Applied Laser in press (2023).
Google Scholar
[25]
F. Khodabakhshi, M.H. Farshidianfar, A.P. Gerlich, M. Nosko, V. Trembošová, A. Khajepour, Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures, Materials Science and Engineering: A 756 (2019) 545-561.
DOI: 10.1016/j.msea.2019.04.065
Google Scholar
[26]
J.E. Masse, G. Barreau, Laser generation of stress waves in metal, Surface & Coatings Technology 70(2-3) (1995) 231-234.
DOI: 10.1016/0257-8972(95)80020-4
Google Scholar
[27]
G.X. Lu, L. Wang, H. Li, Z. Ji, Q. Wang, X. Pei, K. Sugioka, Methods for the suppression of "residual stress holes" in laser shock treatment, Materials Today Communications 28 (2021).
DOI: 10.1016/j.mtcomm.2021.102486
Google Scholar