Combinatorial Synthesis and Characterization of Thermoelectric Composition-Spread (La1-xCax)VO3 (0≤x≤1) Films

Article Preview

Abstract:

La1-xCaxVO3 composition-spread films were fabricated by combinatorial pulsed laser deposition and their thermoelectric properties were evaluated paralelly by the multi-channel thermoelectric measurement system. Concurrent X-ray analysis verified the formation of solid solution films in the full composition range (0≤x≤1) as judged from the linear variation of the lattice constants. The power factor of 0.6 µW/cm K2 was achieved in LaVO3 film at 800°C.Large thermoelectric properties in vanadium oxide system can be expected with the change of vanadium ion valence from 3+ to 2+.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 118-120)

Pages:

775-779

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Plunkett, J.A. Ellman, Sci. Am. 276 (1997) 68.

Google Scholar

[2] H. Koinuma, H.N. Aiyer, Y. Matsumoto, Sci. Tech. Advan. Mater. 1(2000) 1-10.

Google Scholar

[3] X.D. Xiang, X. Sun, G. Briceno, Y. Lou, K. Wang, H. Chang, W.G. Wallac-Freedman, S. Chen, P.G. Schultz, Science 268 (1995) 1738.

Google Scholar

[4] U.S. Joshi, K. Itaka, Y. Matsumoto, H. Koinuma, Joural of. Magnetism and Magnetic Marerials, 321(2009)3595.

Google Scholar

[5] C.B. Satterthwaite Jr., R.W. Ure, Phys. Rev. 108 (1957) 1164-1170.

Google Scholar

[6] D.M. Rowe, V.S. Shukla, J. Appl. Phys. 52 (1981) 7421-7426.

Google Scholar

[7] I. Terasaki, Y. sasago, K. Uchionkura, Phys. Rev. B 56 (1997) R12685-R12687.

Google Scholar

[8] T. Sun, J. Ma, Q.Y. Yan, Journal of CrystalGrowth 311(2009)4123.

Google Scholar

[9] H. Ohta, K. Sugiura, K. Koumoto, Inorg. Chem, 47(2008)8429.

Google Scholar

[10] S. Wang, M. Chen, L. He , J. Phys. D: Appl. Phys. 42(2009)045410.

Google Scholar

[11] W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62 (2000) 6869.

Google Scholar

[12] V.G. Zubkov, et al., Sov. Phys. Solid State 15 (1973) 1079.

Google Scholar

[13] A.V. Mahajan, D.C. Johnston, D.R. Torgeson, F. Borsa, Phys. Rev. B 46 (1992) 10966-10972.

Google Scholar

[14] F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji, Y. Tokura, Phys. Rev. B 52 (1995) R2221-R2224.

Google Scholar

[15] P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S-W. Cheong, HTakagi, C.S. Oglesby, B. Batlogg, J. Solid, State Chem. 106 (1993) 253-270.

DOI: 10.1006/jssc.1993.1285

Google Scholar

[16] M. Kestigian, J.G. Dickinson, R. Ward, J. Am. Chem. Soc. 79 (1957) 5598.

Google Scholar

[17] T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, H. Koinuma, Appl. Phys. Lett. 77 (2000) 3426-3428.

DOI: 10.1063/1.1326847

Google Scholar

[18] K. Omote, T. Kikuchi, J. Harada, M. Kawasaki, A. Ohtomo, M. Ohtani, T. Ohnishi, D. Komiyama, H. Koinuma, Proc. SPIE 3941(2000) 84-91.

DOI: 10.1117/12.385416

Google Scholar

[19] K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, H. Koinuma, J. Therm. Anal. Cal. 69 (2002) 1051-1058.

DOI: 10.1023/a:1020657401053

Google Scholar

[20] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70 (1998)1039-1263.

Google Scholar

[21] H.C. Nguyen, J.B. Goodenough, Phys. Rev. B 52 (1995)8776-8787.

Google Scholar