Combinatorial Pulsed Laser Deposition and Thermoelectricity of (Ca1-xAx)3Co4O9 (A: Sr, Ba) Composition-Spread Films

Article Preview

Abstract:

(Ca1-xAx)3Co4O9 (A: Sr, Ba) composition-spread films were fabricated successfully on TiO2 (100) substrate by combinatorial pulsed laser deposition (CPLD), and their thermoelectric (TE) properties and structure were evaluated by the multi-channel thermoelectric measurement system and concurrent X-ray analysis respectively. The largest power factor in (Ca1-xSrx)3Co4O9 film library was achieved as 1.67µW/cmK2. The influence of substitution on TE properties was investigated by doping Sr2+ and Ba2+ ions into Ca3Co4O9. However, there was little change of Seebeck coefficient in the range of 0≤x≤0.1 for (Ca1-xAx)3Co4O9 (A: Sr, Ba) films, which suggested that the substitution ions with smaller size were potential candidates for good TE properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 118-120)

Pages:

780-784

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.B. Satterthwaite Jr., R.W. Ure, Phys. Rev. 108 (1957) 1164-1170.

Google Scholar

[2] D.M. Rowe, V.S. Shukla, J. Appl. Phys. 52 (1981) 7421-7426.

Google Scholar

[3] J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kuman, D.S. Beers,J. Appl. Phys. 35 (1964) 2899.

Google Scholar

[4] I. Terasaki, Y. sasago, K. Uchionkura, Phys. Rev. B 56 (1997) R12685-R12687.

Google Scholar

[5] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Phys. Rev. B 60 (1999) 10580-10583.

Google Scholar

[6] W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62 (2000) 6869.

Google Scholar

[7] R. Funahashi, I. Matsubara, H. Ikuta, Jan.J. Appl. Phys. 39(2000)L1127.

Google Scholar

[8] A.C. Masset, C. Michel, A. Maignan, Phys. Rev. B 61(2000)166.

Google Scholar

[9] D.J. Singh, Phys. Rev. B61(2000)13397.

Google Scholar

[10] Xuebin Zhu, Yuping Sun, Hechang Lei, J. Appl. Phys. 102(2007)103519.

Google Scholar

[11] T. Sun, J. Ma, Q.Y. Yan, Journal of CrystalGrowth 311(2009)4123.

Google Scholar

[12] H. Ohta, K. Sugiura, K. Koumoto, Inorg. Chem, 47(2008)8429.

Google Scholar

[13] S. Wang, M. Chen, L. He , J. Phys. D: Appl. Phys. 42(2009)045410.

Google Scholar

[14] M.J. Plunkett, J.A. Ellman, Sci. Am. 276 (1997) 68.

Google Scholar

[15] H. Koinuma, H.N. Aiyer, Y. Matsumoto, Sci. Tech. Advan. Mater. 1(2000) 1-10.

Google Scholar

[16] X.D. Xiang, X. Sun, G. Briceno, Y. Lou, K. Wang, H. Chang, W.G. Wallac-Freedman, S. Chen, P.G. Schultz, Science 268 (1995) 1738.

Google Scholar

[17] T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, H. Koinuma, Appl. Phys. Lett. 77 (2000) 3426-3428.

DOI: 10.1063/1.1326847

Google Scholar

[18] K. Omote, T. Kikuchi, J. Harada, M. Kawasaki, A. Ohtomo, M. Ohtani, T. Ohnishi, D. Komiyama, H. Koinuma, Proc. SPIE 3941(2000) 84-91.

DOI: 10.1117/12.385416

Google Scholar

[19] K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, H. Koinuma, J. Therm. Anal. Cal. 69 (2002) 1051-1058.

DOI: 10.1023/a:1020657401053

Google Scholar