[1]
J. Parades-Aguilar, V. Reyes-Martínez, G. Bustamante, F. J. Almendáriz-Tapia, G. Martínez-Meza, R. Vílchez-Vargas, & K. Calderón (2021). Removal of nickel (II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. Journal of Environmental Management, 279, 111558.
DOI: 10.1016/j.jenvman.2020.111558
Google Scholar
[2]
D. Schrenk, M. Bignami, L. Bodin, J. K. Chipman, J. Del Mazo, & E. Nielsen (2020). Update of the risk assessment of nickel in food and drinking water. Efsa Journal, 18(11).
DOI: 10.2903/j.efsa.2020.6268
Google Scholar
[3]
T. E. Oladimeji, M. Oyedemi, M. E. Emetere, O. Agboola, J. B. Adeoye & O. A. Odunlami, (2024). Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon, 10 (23).
DOI: 10.1016/j.heliyon.2024.e40370
Google Scholar
[4]
G. Genchi, A. Carocci, G. Lauria, M. S. Sinicropi & A. Catalano (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17 (3), 679.
DOI: 10.3390/ijerph17030679
Google Scholar
[5]
W. Begum, S. Rai, S. Banerjee, S. Bhattacharjee, M. H. Mondal, A. Bhattarai, B. Saha, (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC advances, 12 (15), 9139-9153.
DOI: 10.1039/d2ra00378c
Google Scholar
[6]
S. Buxton, E. Garman, K. E. Heim, T. Lyons-Darden, C. E. Schlekat, M. D. Taylor & A. R. Oller (2019). Concise review of nickel human health toxicology and ecotoxicology. Inorganics, 7 (7), 89.
DOI: 10.3390/inorganics7070089
Google Scholar
[7]
Y. Fei & Y. H. Hu, (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077.
DOI: 10.1016/j.chemosphere.2023.139077
Google Scholar
[8]
S. K. Gunatilake, (2015). Methods of removing heavy metals from industrial wastewater. Methods, 1(1), 14.
Google Scholar
[9]
Y. Fei & Y. H. Hu, (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077.
DOI: 10.1016/j.chemosphere.2023.139077
Google Scholar
[10]
S. I. Shofia, A. S. Vickram, A. Saravanan, V.C. Deivayanai & P. R. Yaashikaa, (2025). Sustainable separation technologies for heavy metal removal from wastewater: An upgraded review of physicochemical methods and its advancements. Sustainable Chemistry for the Environment.
DOI: 10.1016/j.scenv.2025.100264
Google Scholar
[11]
H. Hazrati, A.H. Moghaddam, M. Rostamizadeh, (2017). The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling, J. Environ. Chem. Eng. 5 3005–3013.
DOI: 10.1016/j.jece.2017.05.050
Google Scholar
[12]
J.M. Salman, A.J. Mohammed, Optimization Study on the Removal of Cadmium Ion onto Biomass Nanoparticles using Response Surface Methodology, (2023) 431–437.
Google Scholar
[13]
M. H. Mahmoudian, A. Azari, A. Jahantigh, M. Sarkhosh, M. Yousefi, |S. A. Razavinasab & M. Ghasemian, (2023). Statistical modeling and optimization of dexamethasone adsorption from aqueous solution by Fe3O4@ NH2-MIL88B nanorods: Isotherm, kinetics, and thermodynamic. Environmental Research, 236, 116773.
DOI: 10.1016/j.envres.2023.116773
Google Scholar
[14]
M. A. Gharaghani, M. Samaei, H. Mahdizadeh, A. Nasiri, M. Keshtkar, A. Mohammadpour & A. M. Khaneghah, (2024). An effective magnetic nanobiocomposite: Preparation, characterization and its application for adsorption removal of P-nitroaniline from aquatic environments. Environmental Research, 246, 118128.
DOI: 10.1016/j.envres.2024.118128
Google Scholar
[15]
G. Korsa, D. Alemu & A. Ayele, (2024). Azolla plant production and their potential applications. International Journal of Agronomy, 2024(1), 1716440.
DOI: 10.1155/2024/1716440
Google Scholar
[16]
Rashad, S. (2021). An overview on the aquatic fern Azolla spp. as a sustainable source of nutrients and bioactive compounds with resourceful applications. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 775-782.
DOI: 10.21608/ejabf.2021.150205
Google Scholar
[17]
W. Xu, T. Yang, S. Liu, L. Du, Q. Chen, X. Li & X. Tan, (2022). Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environment International, 158, 106980.
DOI: 10.1016/j.envint.2021.106980
Google Scholar
[18]
J.M. Salman, A.J. Mohammed, (2023) Optimization Study on the Removal of Cadmium Ion onto Biomass Nanoparticles using Response Surface Methodology, 431–437.
Google Scholar
[19]
P. Kumar, V. Sharma, J.P. Singh, A. Kumar, S. Chahal, K. Sachdev, K.H. Chae, A. Kumar, K. Asokan, D. Kanjilal, (2019). Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures, J. Magn. Magn. Mater. 489 165398.
DOI: 10.1016/j.jmmm.2019.165398
Google Scholar
[20]
A. J. Mohammed, M. H. Ibrahim, S. Z. Zulkifli & J. M. Salman, (2021). Synthesis and Characterization of a Nano-Adsorbent Derivative Derived from Grape Seeds for Cadmium Ion Removal in an Aqueous Solution. Water, 13(20), 2896.
DOI: 10.3390/w13202896
Google Scholar
[21]
J. M. Salman, (2013). Preparation of Mesoporous‐Activated Carbon from Branches of Pomegranate Trees: Optimization on Removal of Methylene Blue Using Response Surface Methodology. Journal of Chemistry, 2013(1), 489670.
DOI: 10.1155/2013/489670
Google Scholar
[22]
J. M. Salman & B. H. Hameed, (2010). Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of hazardous materials, 175(1-3), 133-137.
DOI: 10.1016/j.jhazmat.2009.09.139
Google Scholar
[23]
B. D. Yirsaw, M. Megharaj, Z. Chen & R. Naidu, (2016). Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environmental Technology & Innovation, 5, 136-147.
DOI: 10.1016/j.eti.2016.01.005
Google Scholar
[24]
M. Savasari, M. Emadi, M. A. Bahmanyar & P. Biparva, (2015). Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. Journal of Industrial and Engineering Chemistry, 21, 1403-1409.
DOI: 10.1016/j.jiec.2014.06.014
Google Scholar
[25]
K. Bouattou, A. Ali-Nehari & W. Djamai, (2024). Assessment of the biological activities of Azolla pinnata growing in the North-West of Algeria. Bionatura Journal, 1(3).
DOI: 10.70099/bj/2024.01.03.14
Google Scholar
[26]
A. K. Meena, G. K. Mishra, S. Kumar, C. Rajagopal & P. N. Nagar, (2003). Adsorption of Ni (II) and Zn (II) from aqueous solution by chemically treated activated carbon. In National conference on carbon (Indo-carbon) Kanpoor (pp.131-141).
Google Scholar
[27]
J. M. Salman, V. O. Njoku & B. H. Hameed, (2011). Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chemical Engineering Journal, 174(1), 33-40.
DOI: 10.1016/j.cej.2011.08.024
Google Scholar
[28]
U. K. Garg, M. P. Kaur, V. K. Garg & D. Sud, (2008). Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresource technology, 99(5), 1325-1331.
DOI: 10.1016/j.biortech.2007.02.011
Google Scholar
[29]
U. K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of Nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresource Technology, Vol. 99, Iss. 5, 2006, pp.1325-1331.
DOI: 10.1016/j.biortech.2007.02.011
Google Scholar
[30]
M. Kamel, A. M. Bastaweesy & R. A. Hefny, (2025). Optimized Removal of Cr (VI) and Ni (II) From Wastewater Using Corncob-Derived Activated Carbon. Water, Air, & Soil Pollution, 236 (2), 1-22.
DOI: 10.1007/s11270-024-07711-3
Google Scholar
[31]
N. Rahmati, M. Rahimnejad, Pourali & S. K. Muallah, (2021). Effective removal of nickel ions from aqueous solution using multi-wall carbon nanotube functionalized by glycerol-based deep eutectic solvent. Colloid and Interface Science Communications, 40, 100347.
DOI: 10.1016/j.colcom.2020.100347
Google Scholar
[32]
A. C. Boukis, C., Galvita, V. V., Poelman, H., & Marin, G. B. (2021). Synthesis of ZnO–CoO/Al₂O₃ nanoparticles and its application as a catalyst in ethanol conversion to acetone. Results in Chemistry, 3, 100249.
DOI: 10.1016/j.rechem.2021.100249
Google Scholar
[33]
A. Ganguly, S. Pradhan & S. Sain, (2023). Methane activation on metal oxide nanoparticles: spectroscopic identification of reaction mechanism. Particulate Science and Technology, 41(5), 653–660.
DOI: 10.1080/02726351.2022.2129533
Google Scholar
[34]
S. Sahoo, A. Pradhan & P. Mohanty, (2023). Spectroscopic investigation of carbon dioxide interactions with transition metal-oxide nanoparticles. Chemical Engineering & Technology, 46(3), 587–594.
Google Scholar
[35]
S. Farhadi, H. Zaheri & H. Maleki, (2022). Employing synthesized MgO–SiO₂ nanoparticles as catalysts in ethanol conversion to 1,3-butadiene. International Journal of Nanoscience and Nanotechnology, 18(3), 157–166.
Google Scholar
[36]
M. Ali, A. Khan & S. Rehman, (2025). The impact of adding nanoparticles to biodiesel fuel prepared from waste sunflower oil on the performance and emission of diesel engines. Circular Economy, 4(2), 100138.
DOI: 10.1016/j.cec.2025.100138
Google Scholar
[37]
M. Hossain, A. Rahman & M. Karim, (2024). The influence of eggshell nanoparticles as a partial replacement of cement in concrete. Innovative Infrastructure Solutions, 9 (12), 1–11.
Google Scholar