Green Synthesis of Azolla Pinnata Extract Nanoparticles for Nickel Removal from Industrial Wastewater: An Optimization Study

Article Preview

Abstract:

Azolla pinnata extract and iron chloride were combined under optimized conditions using Response Surface Methodology (RSM) to synthesize Azolla pinnata-iron oxide nanoparticles (AP-IONPs). The study investigated the effects of three key parameters mixing ratio of iron chloride to Azolla pinnata extract (v/v), solution pH, and mixing temperature on the removal efficiency of nickel (Ni²⁺) ions from aqueous solutions. A Central Composite Design (CCD) was employed to develop two-factor interaction (2FI) and quadratic models describing the influence of these variables on nanoparticle synthesis and adsorption performance. Analysis of Variance (ANOVA) was used to determine the most significant factors affecting Ni removal. The optimal synthesis conditions were identified as a mixing ratio of 2.5:1, solution pH of 2.5, and a temperature of 70 °C. Under these conditions, the predicted and experimental Ni removal efficiencies were 98.1% and 97.1%, respectively, with a prediction error of just 1.02%. Keywords: Green synthesis; Response surface methodology; Azolla pinnata; Nanoparticles Heavy metals; Nickel; Adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-117

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Parades-Aguilar, V. Reyes-Martínez, G. Bustamante, F. J. Almendáriz-Tapia, G. Martínez-Meza, R. Vílchez-Vargas, & K. Calderón (2021). Removal of nickel (II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. Journal of Environmental Management, 279, 111558.

DOI: 10.1016/j.jenvman.2020.111558

Google Scholar

[2] D. Schrenk, M. Bignami, L. Bodin, J. K. Chipman, J. Del Mazo, & E. Nielsen (2020). Update of the risk assessment of nickel in food and drinking water. Efsa Journal, 18(11).

DOI: 10.2903/j.efsa.2020.6268

Google Scholar

[3] T. E. Oladimeji, M. Oyedemi, M. E. Emetere, O. Agboola, J. B. Adeoye & O. A. Odunlami, (2024). Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon, 10 (23).

DOI: 10.1016/j.heliyon.2024.e40370

Google Scholar

[4] G. Genchi, A. Carocci, G. Lauria, M. S. Sinicropi & A. Catalano (2020). Nickel: Human health and environmental toxicology. International journal of environmental research and public health, 17 (3), 679.‏

DOI: 10.3390/ijerph17030679

Google Scholar

[5] W. Begum, S. Rai, S. Banerjee, S. Bhattacharjee, M. H. Mondal, A. Bhattarai, B. Saha, (2022). A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC advances, 12 (15), 9139-9153.‏

DOI: 10.1039/d2ra00378c

Google Scholar

[6] S. Buxton, E. Garman, K. E. Heim, T. Lyons-Darden, C. E. Schlekat, M. D. Taylor & A. R. Oller (2019). Concise review of nickel human health toxicology and ecotoxicology. Inorganics, 7 (7), 89.‏

DOI: 10.3390/inorganics7070089

Google Scholar

[7] Y. Fei & Y. H. Hu, (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077.‏

DOI: 10.1016/j.chemosphere.2023.139077

Google Scholar

[8] S. K. Gunatilake, (2015). Methods of removing heavy metals from industrial wastewater. Methods, 1(1), 14.

Google Scholar

[9] Y. Fei & Y. H. Hu, (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077.‏

DOI: 10.1016/j.chemosphere.2023.139077

Google Scholar

[10] S. I. Shofia, A. S. Vickram, A. Saravanan, V.C. Deivayanai & P. R. Yaashikaa, (2025). Sustainable separation technologies for heavy metal removal from wastewater: An upgraded review of physicochemical methods and its advancements. Sustainable Chemistry for the Environment.

DOI: 10.1016/j.scenv.2025.100264

Google Scholar

[11] H. Hazrati, A.H. Moghaddam, M. Rostamizadeh, (2017). The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling, J. Environ. Chem. Eng. 5 3005–3013.

DOI: 10.1016/j.jece.2017.05.050

Google Scholar

[12] J.M. Salman, A.J. Mohammed, Optimization Study on the Removal of Cadmium Ion onto Biomass Nanoparticles using Response Surface Methodology, (2023) 431–437.

Google Scholar

[13] M. H. Mahmoudian, A. Azari, A. Jahantigh, M. Sarkhosh, M. Yousefi, |S. A. Razavinasab & M. Ghasemian, (2023). Statistical modeling and optimization of dexamethasone adsorption from aqueous solution by Fe3O4@ NH2-MIL88B nanorods: Isotherm, kinetics, and thermodynamic. Environmental Research, 236, 116773.

DOI: 10.1016/j.envres.2023.116773

Google Scholar

[14] M. A. Gharaghani, M. Samaei, H. Mahdizadeh, A. Nasiri, M. Keshtkar, A. Mohammadpour & A. M. Khaneghah, (2024). An effective magnetic nanobiocomposite: Preparation, characterization and its application for adsorption removal of P-nitroaniline from aquatic environments. Environmental Research, 246, 118128.

DOI: 10.1016/j.envres.2024.118128

Google Scholar

[15] G. Korsa, D. Alemu & A. Ayele, (2024). Azolla plant production and their potential applications. International Journal of Agronomy, 2024(1), 1716440.

DOI: 10.1155/2024/1716440

Google Scholar

[16] Rashad, S. (2021). An overview on the aquatic fern Azolla spp. as a sustainable source of nutrients and bioactive compounds with resourceful applications. Egyptian Journal of Aquatic Biology and Fisheries, 25(1), 775-782.‏

DOI: 10.21608/ejabf.2021.150205

Google Scholar

[17] W. Xu, T. Yang, S. Liu, L. Du, Q. Chen, X. Li & X. Tan, (2022). Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environment International, 158, 106980.‏

DOI: 10.1016/j.envint.2021.106980

Google Scholar

[18] J.M. Salman, A.J. Mohammed, (2023) Optimization Study on the Removal of Cadmium Ion onto Biomass Nanoparticles using Response Surface Methodology, 431–437.

Google Scholar

[19] P. Kumar, V. Sharma, J.P. Singh, A. Kumar, S. Chahal, K. Sachdev, K.H. Chae, A. Kumar, K. Asokan, D. Kanjilal, (2019). Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures, J. Magn. Magn. Mater. 489 165398.

DOI: 10.1016/j.jmmm.2019.165398

Google Scholar

[20] A. J. Mohammed, M. H. Ibrahim, S. Z. Zulkifli & J. M. Salman, (2021). Synthesis and Characterization of a Nano-Adsorbent Derivative Derived from Grape Seeds for Cadmium Ion Removal in an Aqueous Solution. Water, 13(20), 2896.

DOI: 10.3390/w13202896

Google Scholar

[21] J. M. Salman, (2013). Preparation of Mesoporous‐Activated Carbon from Branches of Pomegranate Trees: Optimization on Removal of Methylene Blue Using Response Surface Methodology. Journal of Chemistry, 2013(1), 489670.

DOI: 10.1155/2013/489670

Google Scholar

[22] J. M. Salman & B. H. Hameed, (2010). Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of hazardous materials, 175(1-3), 133-137.

DOI: 10.1016/j.jhazmat.2009.09.139

Google Scholar

[23] B. D. Yirsaw, M. Megharaj, Z. Chen & R. Naidu, (2016). Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environmental Technology & Innovation, 5, 136-147.

DOI: 10.1016/j.eti.2016.01.005

Google Scholar

[24] M. Savasari, M. Emadi, M. A. Bahmanyar & P. Biparva, (2015). Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. Journal of Industrial and Engineering Chemistry, 21, 1403-1409.

DOI: 10.1016/j.jiec.2014.06.014

Google Scholar

[25] K. Bouattou, A. Ali-Nehari & W. Djamai, (2024). Assessment of the biological activities of Azolla pinnata growing in the North-West of Algeria. Bionatura Journal, 1(3).

DOI: 10.70099/bj/2024.01.03.14

Google Scholar

[26] A. K. Meena, G. K. Mishra, S. Kumar, C. Rajagopal & P. N. Nagar, (2003). Adsorption of Ni (II) and Zn (II) from aqueous solution by chemically treated activated carbon. In National conference on carbon (Indo-carbon) Kanpoor (pp.131-141).

Google Scholar

[27] J. M. Salman, V. O. Njoku & B. H. Hameed, (2011). Batch and fixed-bed adsorption of 2, 4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chemical Engineering Journal, 174(1), 33-40.

DOI: 10.1016/j.cej.2011.08.024

Google Scholar

[28] U. K. Garg, M. P. Kaur, V. K. Garg & D. Sud, (2008). Removal of nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresource technology, 99(5), 1325-1331.

DOI: 10.1016/j.biortech.2007.02.011

Google Scholar

[29] U. K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Removal of Nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresource Technology, Vol. 99, Iss. 5, 2006, pp.1325-1331.

DOI: 10.1016/j.biortech.2007.02.011

Google Scholar

[30] M. Kamel, A. M. Bastaweesy & R. A. Hefny, (2025). Optimized Removal of Cr (VI) and Ni (II) From Wastewater Using Corncob-Derived Activated Carbon. Water, Air, & Soil Pollution, 236 (2), 1-22.

DOI: 10.1007/s11270-024-07711-3

Google Scholar

[31] N. Rahmati, M. Rahimnejad, Pourali & S. K. Muallah, (2021). Effective removal of nickel ions from aqueous solution using multi-wall carbon nanotube functionalized by glycerol-based deep eutectic solvent. Colloid and Interface Science Communications, 40, 100347.

DOI: 10.1016/j.colcom.2020.100347

Google Scholar

[32] A. C. Boukis, C., Galvita, V. V., Poelman, H., & Marin, G. B. (2021). Synthesis of ZnO–CoO/Al₂O₃ nanoparticles and its application as a catalyst in ethanol conversion to acetone. Results in Chemistry, 3, 100249.

DOI: 10.1016/j.rechem.2021.100249

Google Scholar

[33] A. Ganguly, S. Pradhan & S. Sain, (2023). Methane activation on metal oxide nanoparticles: spectroscopic identification of reaction mechanism. Particulate Science and Technology, 41(5), 653–660.

DOI: 10.1080/02726351.2022.2129533

Google Scholar

[34] S. Sahoo, A. Pradhan & P. Mohanty, (2023). Spectroscopic investigation of carbon dioxide interactions with transition metal-oxide nanoparticles. Chemical Engineering & Technology, 46(3), 587–594.

Google Scholar

[35] S. Farhadi, H. Zaheri & H. Maleki, (2022). Employing synthesized MgO–SiO₂ nanoparticles as catalysts in ethanol conversion to 1,3-butadiene. International Journal of Nanoscience and Nanotechnology, 18(3), 157–166.

Google Scholar

[36] M. Ali, A. Khan & S. Rehman, (2025). The impact of adding nanoparticles to biodiesel fuel prepared from waste sunflower oil on the performance and emission of diesel engines. Circular Economy, 4(2), 100138.

DOI: 10.1016/j.cec.2025.100138

Google Scholar

[37] M. Hossain, A. Rahman & M. Karim, (2024). The influence of eggshell nanoparticles as a partial replacement of cement in concrete. Innovative Infrastructure Solutions, 9 (12), 1–11.

Google Scholar