[1]
Prajapati, N. K., Agnihotri, A. K., & Basak, N. (2023). Microbial induced calcite precipitation (MICP) a sustainable technique for stabilization of soil: A review. Materials Today: Proceedings
DOI: 10.1016/j.matpr.2023.07.303
Google Scholar
[2]
Fouladi, A. S., Arulrajah, A., Chu, J., & Horpibulsuk, S. (2023). Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Construction and Building Materials, 131546.
DOI: 10.1016/j.conbuildmat.2023.131546
Google Scholar
[3]
Salman, A. D. (2021). Effect of microbial induced calcite precipitation and nanomaterials techniques on improving the behavior of gypseous soils. University of Baghdad, Department of Civil Engineering.
Google Scholar
[4]
Bundeleva, I. A., Shirokova, L. S., Bénézeth, P., Pokrovsky, O. S., Kompantseva, E. I., & Balor, S. (2012). Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chemical Geology, 291, 116-131.
DOI: 10.1016/j.chemgeo.2011.10.003
Google Scholar
[5]
Ganendra, G., 2015. Housing Methane-Oxidizing Bacteria on Building Materials: Towardsa Sustainable Air Bioremediation and Building Materials Surface Protection. Ghent University.
Google Scholar
[6]
Deng, S., Dong, H., Lv, G., Jiang, H., Yu, B., & Bishop, M. E. (2010). Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4), 151-159.
DOI: 10.1016/j.chemgeo.2010.09.008
Google Scholar
[7]
Hamdan, N., Kavazanjian Jr., E., Rittmann, B.E., Karatas, I., 2017. Carbonate mineralprecipitation for soil improvement through microbial denitrification. Geomicrobiol J.34 (2), 139–146.
DOI: 10.1080/01490451.2016.1154117
Google Scholar
[8]
Kulanthaivel, P., Soundara, B., Selvakumar, S., & Das, A. (2022). Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. Environmental Science and Pollution Research, 29(44), 66450-66461.
DOI: 10.1007/s11356-022-20484-8
Google Scholar
[9]
Wei, T., Yashir, N., An, F., Imtiaz, S. A., Li, X., & Li, H. (2022). Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. Environmental Science and Pollution Research, 29, 2924-2935.
DOI: 10.1007/s11356-021-15138-0
Google Scholar
[10]
Khadim, H. J., Ammar, S. H., & Ebrahim, S. E. (2019). Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses' soil. Environmental Technology & Innovation, 14, 100315.
DOI: 10.1016/j.eti.2019.100315
Google Scholar
[11]
Hadi.Z.2022.Bioremedation Technique for Mitigation the Environmental Effect of Polluted Soils. Thesis.
Google Scholar
[12]
Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707–714.
DOI: 10.4014/jmb.1212.11087
Google Scholar
[13]
Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. Biofouling 29:715–733.
DOI: 10.1080/08927014.2013.796550
Google Scholar
[14]
Torres-Aravena, Á., Duarte-Nass, C., Azócar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters? Crystals, 8(11), 438. University Press.
DOI: 10.3390/cryst8110438
Google Scholar
[15]
Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology (Vol.94, Issue September 2018). Elsevier Ltd.
DOI: 10.1016/bs.aambs.2015.12.002
Google Scholar
[16]
Wang, X., Tao, J., Bao, R., Tran, T., Tucker-Kulesza, S., 2018. Surficial soil stabilizationagainst water-induced erosion using polymer-modified microbially induced carbonate precipitation. J. Mater. Civ. Eng. 30 (10), 04018267
DOI: 10.1061/(asce)mt.1943-5533.0002490
Google Scholar
[17]
Ferris, F. G., Stehmeier, L. G., Kantzas, A. & Mourits, F. M. (1997). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 36, 56-61.
DOI: 10.2118/97-09-07
Google Scholar
[18]
Omoregie, A. I., Ginjom, R. H.& Nissom, P. M. (2018). Microbially Induced Carbonate Precipitation Via Ureolysis Process: A Mini-Review. Transactions on Science and Technology Vol. 5, No. 4, 245- 256
Google Scholar
[19]
Sun, X., Miao, L., & Chen, R. (2019). Effects of Different Clay's Percentages on Improvement of Sand-Clay Mixtures with Microbially Induced Calcite Precipitation. Geomicrobiology Journal, 36(9), 810–818.
DOI: 10.1080/01490451.2019.1631912
Google Scholar
[20]
Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.
DOI: 10.1186/s40064-016-1869-2
Google Scholar
[21]
Tobler, D., Cuthbert, M. O., Greswell, R. B., Riley, M., Renshaw, J., HandleySidhu, S., & Phoenix, V. (2011). Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochimica et Cosmochimica Acta, 75(11), 3290-3301.
DOI: 10.1016/j.gca.2011.03.023
Google Scholar
[22]
Ghanim. I. 2021. Evaluation of Leachate Composition from Solidified Heavy Metals Using Biocementation Process. Thesis.
Google Scholar
[23]
Fujita, M., Nakashima, K., Achal, V., Kawasaki, S., 2017. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochem. Eng. J. 124, 1–5.
DOI: 10.1016/j.bej.2017.04.004
Google Scholar
[24]
Omoregie, A. I., Palombo, E. A., & Nissom, P. M. (2021). Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environmental Engineering Research, 26(6).
DOI: 10.4491/eer.2020.379
Google Scholar
[25]
Okwadha GDO, Li J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010;89:1143-11
DOI: 10.1016/j.chemosphere.2010.09.066
Google Scholar
[26]
Wang. Y . 2018. Microbial-Induced Calcium Carbonate Precipitation: from Micro to Macro Scale. University of Cambridge .PhD Thesis .
Google Scholar
[27]
Stocks-Fischer, S., Galinat, J.K., Bang, S.S., 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571.
DOI: 10.1016/s0038-0717(99)00082-6
Google Scholar
[28]
van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of geotechnical and geoenvironmental engineering, 136(12), 1721-1728.
DOI: 10.1061/(asce)gt.1943-5606.0000382
Google Scholar
[29]
Zhao X, Wang M, Wang H, Tang D, Huang J, Sun Y (2019) Study on theremediation of Cd pollution by the biomineralization of urea.
Google Scholar
[30]
Imran MA, Kimura S, Nakashima K, Evelpidou N, Kawasaki S. Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method. Appl. Sci. 2019;9:4462.
DOI: 10.3390/app9204462
Google Scholar
[31]
Deng, W., & Wang, Y. (2018). Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Advances in civil Engineering, 2018.
DOI: 10.1155/2018/9590653
Google Scholar
[32]
Zhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9), 229.
DOI: 10.1007/s12665-023-10899-y
Google Scholar
[33]
Duarte-Nass, C., Rebolledo, K., Valenzuela, T., Kopp, M., Jeison, D., Rivas, M., ... & Ciudad, G. (2020). Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. Journal of environmental management, 256, 109938.
DOI: 10.1016/j.jenvman.2019.109938
Google Scholar
[34]
Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and building materials, 102, 349-357.
DOI: 10.1016/j.conbuildmat.2015.11.006
Google Scholar
[35]
Pandit, J., & Sharma, A. K. (2022). Urbanization's environmental imprint: A review. Environment Conservation Journal, 23(3), 168-177.
Google Scholar
[36]
Erdogan, N., & Eken, H. A. (2017). Precipitated calcium carbonate production, synthesis and properties. Physicochemical Problems of Mineral Processing, 53.
Google Scholar
[37]
Witte, C. P. (2011). Urea metabolism in plants. Plant Science, 180(3), 431-438.
Google Scholar
[38]
Chen, H.-J., Huang, Y.-H., Chen, C.-C., Maity, J.P., Chen, C.-Y., 2019. Microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea. Waste Biomass Valorization. 10 (10), 2887–2895.
DOI: 10.1007/s12649-018-0324-8
Google Scholar
[39]
Comadran-Casas, C., Schaschke, C. J., Akunna, J. C., & Jorat, M. E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. Journal of Environmental Management, 304, 114307.
DOI: 10.1016/j.jenvman.2021.114307
Google Scholar
[40]
Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537.
DOI: 10.1080/01490451.2016.1225866
Google Scholar
[41]
Liu, B., Tang, C. S., Pan, X. H., Zhu, C., Cheng, Y. J., Xu, J. J., & Shi, B. (2021). Potential drought mitigation through microbial induced calcite precipitation‐MICP. Water Resources Research, 57(9), e2020WR029434.
DOI: 10.1029/2020wr029434
Google Scholar
[42]
Choi, S. G., J. Chu, R. C. Brown, K. J. Wang, and Z. Y. Wen. 2017.Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derivedfrom Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering 5 (8):7449.
DOI: 10.1021/acssuschemeng.7b02137
Google Scholar
[43]
Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2017.Biocementation of Calcareous Sand Using Soluble Calcium Derivedfrom Calcareous Sand. Bulletin of Engineering Geology & theEnvironment 76 :1–11.
DOI: 10.1007/s10064-017-1106-4
Google Scholar
[44]
Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. Bio-cementationof Sandy Soil Using Microbially Induced Carbonate Precipitation for Marine Environments. s. Geotechnique 64 (12):1010–1013.
DOI: 10.1680/geot.14.t.025
Google Scholar
[45]
Choi, S. G., Wu, S., & Chu, J. (2016). Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering, 142(10), 06016010.
DOI: 10.1061/(asce)gt.1943-5606.0001534
Google Scholar
[46]
Sugata, M., Widjajakusuma, J., Augestasia, A., Zacharia, A., & Tan, T. J. (2020, June). The use of eggshell powder as calcium source in stabilizing expansive soil using Bacillus subtilis. In Journal of Physics: Conference Series (Vol. 1567, No. 3, p.032058). IOP Publishing.
DOI: 10.1088/1742-6596/1567/3/032058
Google Scholar
[47]
Seesanong, S., Wongchompoo, Y., Boonchom, B., Sronsri, C., Laohavisuti, N., Chaiseeda, K., & Boonmee, W. (2022). Economical and environmentally friendly track of biowaste recycling of scallop shells to calcium lactate. ACS omega, 7(17), 14756-14764.
DOI: 10.1021/acsomega.2c00112
Google Scholar
[48]
Meng, H., Shu, S., Gao, Y., He, J., & Wan, Y. (2021). Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation. Acta Geotechnica, 16(12), 4045-4059.
DOI: 10.1007/s11440-021-01334-2
Google Scholar
[49]
Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399.
DOI: 10.1080/1064119x.2019.1575939
Google Scholar
[50]
Lambert, S. E., & Randall, D. G. (2019). Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water research, 160, 158-166.
DOI: 10.1016/j.watres.2019.05.069
Google Scholar
[51]
Gowthaman, S., Koizumi, H., Nakashima, K., & Kawasaki, S. (2023). Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface. Case Studies in Construction Materials, 18, e02086.
DOI: 10.1016/j.cscm.2023.e02086
Google Scholar
[52]
Holeček, P., Kliková, K., Koňáková, D., Stiborová, H., & Nežerka, V. (2024). Ureolytic bacteria-assisted recycling of waste concrete fines. Powder Technology, 434, 119310.
DOI: 10.1016/j.powtec.2023.119310
Google Scholar
[53]
Amiri, A., & Bundur, Z. B. (2018). Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials, 165, 655-662.
DOI: 10.1016/j.conbuildmat.2018.01.070
Google Scholar
[54]
Avramenko, M., Nakashima, K., Takano, C., & Kawasaki, S. (2023). Eco-friendly soil stabilization method using fish bone as cement material. Science of The Total Environment, 900, 165823.
DOI: 10.1016/j.scitotenv.2023.165823
Google Scholar
[55]
Paul, V.G., Wronkiewicz, D.J., & Mormile, M.R. (2017). Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Applied geochemistry, 78, 250-271.
DOI: 10.1016/j.apgeochem.2017.01.010
Google Scholar
[56]
Osinubi, K. J., Eberemu, A. O., Ijimdiya, T. S., Yakubu, S. E., Gadzama, E. W., Sani, J. E., & Yohanna, P. (2020). Review of the use of microorganisms in geotechnical engineering applications. SN Applied Sciences, 2, 1-19.
DOI: 10.1007/s42452-020-1974-2
Google Scholar
[57]
Raheem, L. S., & Khadim, H. J. (2024). Microbial-induced carbonate precipitation using eggshells and scallop shells as recycled materials. Case Studies in Chemical and Environmental Engineering, 10, 100867.
DOI: 10.1016/j.cscee.2024.100867
Google Scholar
[58]
Khadim, H.J., Ebrahim, S.E., & Ammai, S. H. (2022, October). Sand bioconsolidation/ biosolidification by microbially induced carbonate precipitation using ureolytic bacteria. In AIP Conference Proceedings (Vol. 2398, No. 1, p.040022). AIP Publishing LLC.
DOI: 10.1063/5.0093407
Google Scholar