Review of Potential Waste Recycling Materials in Microbial-Induced Calcite Precipitation Technology

Article Preview

Abstract:

The issue of waste generation is becoming increasingly pressing in numerous nations worldwide, especially in urban regions experiencing rapid population increase and industrialization. Diseases can spread, land can become degraded, and air and water pollution can all be caused by improper garbage disposal. Additionally, the production of waste uses a lot of energy and natural resources, which depletes vital resources and increases emissions of greenhouse gases. To mitigate these concerns, sustainable waste management strategies that reduce trash generation and promote source reuse and recycling are needed. Among these is the development of novel technologies for environmental bioremediation and protection, building materials, and the application is Microbial Induced Calcite Precipitation (MICP). This is an efficient way to turn waste into useful and long-lasting applications. Utilizing bacteria and chemical reagents in conjunction with biotic processes to generate mineral bicarbonate, MICP is an eco-friendly method. The material has the potential to be a sustainable, economical, and energy-efficient solution to technical and environmental problems. Recent research has shown that waste may be used in place of several MICP chemical modules that are present in the cementation reagents (urea and calcium source) and the medium used to cultivate microorganisms. Additionally, it has been established that the MICP is a sustainable and economically viable technology that works with a variety of waste media. With a focus on the role of recyclable waste, this in-depth review study attempts to give a full grasp of the engineering applications and environmental benefits of MICP technology. It also provides academic indications on how to recognize and address possible complexities when using recyclable waste sources for the use of the MICP technique.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-140

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Prajapati, N. K., Agnihotri, A. K., & Basak, N. (2023). Microbial induced calcite precipitation (MICP) a sustainable technique for stabilization of soil: A review. Materials Today: Proceedings

DOI: 10.1016/j.matpr.2023.07.303

Google Scholar

[2] Fouladi, A. S., Arulrajah, A., Chu, J., & Horpibulsuk, S. (2023). Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Construction and Building Materials, 131546.‏

DOI: 10.1016/j.conbuildmat.2023.131546

Google Scholar

[3] Salman, A. D. (2021). Effect of microbial induced calcite precipitation and nanomaterials techniques on improving the behavior of gypseous soils. University of Baghdad, Department of Civil Engineering.

Google Scholar

[4] Bundeleva, I. A., Shirokova, L. S., Bénézeth, P., Pokrovsky, O. S., Kompantseva, E. I., & Balor, S. (2012). Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chemical Geology, 291, 116-131.

DOI: 10.1016/j.chemgeo.2011.10.003

Google Scholar

[5] Ganendra, G., 2015. Housing Methane-Oxidizing Bacteria on Building Materials: Towardsa Sustainable Air Bioremediation and Building Materials Surface Protection. Ghent University.

Google Scholar

[6] Deng, S., Dong, H., Lv, G., Jiang, H., Yu, B., & Bishop, M. E. (2010). Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4), 151-159.

DOI: 10.1016/j.chemgeo.2010.09.008

Google Scholar

[7] Hamdan, N., Kavazanjian Jr., E., Rittmann, B.E., Karatas, I., 2017. Carbonate mineralprecipitation for soil improvement through microbial denitrification. Geomicrobiol J.34 (2), 139–146.

DOI: 10.1080/01490451.2016.1154117

Google Scholar

[8] Kulanthaivel, P., Soundara, B., Selvakumar, S., & Das, A. (2022). Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. Environmental Science and Pollution Research, 29(44), 66450-66461.

DOI: 10.1007/s11356-022-20484-8

Google Scholar

[9] Wei, T., Yashir, N., An, F., Imtiaz, S. A., Li, X., & Li, H. (2022). Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. Environmental Science and Pollution Research, 29, 2924-2935.‏

DOI: 10.1007/s11356-021-15138-0

Google Scholar

[10] Khadim, H. J., Ammar, S. H., & Ebrahim, S. E. (2019). Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses' soil. Environmental Technology & Innovation, 14, 100315.

DOI: 10.1016/j.eti.2019.100315

Google Scholar

[11] Hadi.Z.2022.Bioremedation Technique for Mitigation the Environmental Effect of Polluted Soils. Thesis.

Google Scholar

[12] Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology, 23(5), 707–714.

DOI: 10.4014/jmb.1212.11087

Google Scholar

[13] Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. Biofouling 29:715–733.

DOI: 10.1080/08927014.2013.796550

Google Scholar

[14] Torres-Aravena, Á., Duarte-Nass, C., Azócar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters? Crystals, 8(11), 438. University Press.

DOI: 10.3390/cryst8110438

Google Scholar

[15] Kumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology (Vol.94, Issue September 2018). Elsevier Ltd.

DOI: 10.1016/bs.aambs.2015.12.002

Google Scholar

[16] Wang, X., Tao, J., Bao, R., Tran, T., Tucker-Kulesza, S., 2018. Surficial soil stabilizationagainst water-induced erosion using polymer-modified microbially induced carbonate precipitation. J. Mater. Civ. Eng. 30 (10), 04018267

DOI: 10.1061/(asce)mt.1943-5533.0002490

Google Scholar

[17] Ferris, F. G., Stehmeier, L. G., Kantzas, A. & Mourits, F. M. (1997). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 36, 56-61.

DOI: 10.2118/97-09-07

Google Scholar

[18] Omoregie, A. I., Ginjom, R. H.& Nissom, P. M. (2018). Microbially Induced Carbonate Precipitation Via Ureolysis Process: A Mini-Review. Transactions on Science and Technology Vol. 5, No. 4, 245- 256

Google Scholar

[19] Sun, X., Miao, L., & Chen, R. (2019). Effects of Different Clay's Percentages on Improvement of Sand-Clay Mixtures with Microbially Induced Calcite Precipitation. Geomicrobiology Journal, 36(9), 810–818.

DOI: 10.1080/01490451.2019.1631912

Google Scholar

[20] Anbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.

DOI: 10.1186/s40064-016-1869-2

Google Scholar

[21] Tobler, D., Cuthbert, M. O., Greswell, R. B., Riley, M., Renshaw, J., HandleySidhu, S., & Phoenix, V. (2011). Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochimica et Cosmochimica Acta, 75(11), 3290-3301.

DOI: 10.1016/j.gca.2011.03.023

Google Scholar

[22] Ghanim. I. 2021. Evaluation of Leachate Composition from Solidified Heavy Metals Using Biocementation Process. Thesis.

Google Scholar

[23] Fujita, M., Nakashima, K., Achal, V., Kawasaki, S., 2017. Whole-cell evaluation of urease activity of Pararhodobacter sp. isolated from peripheral beachrock. Biochem. Eng. J. 124, 1–5.

DOI: 10.1016/j.bej.2017.04.004

Google Scholar

[24] Omoregie, A. I., Palombo, E. A., & Nissom, P. M. (2021). Bioprecipitation of calcium carbonate mediated by ureolysis: a review. Environmental Engineering Research, 26(6).‏

DOI: 10.4491/eer.2020.379

Google Scholar

[25] Okwadha GDO, Li J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010;89:1143-11

DOI: 10.1016/j.chemosphere.2010.09.066

Google Scholar

[26] Wang. Y . 2018. Microbial-Induced Calcium Carbonate Precipitation: from Micro to Macro Scale. University of Cambridge .PhD Thesis .

Google Scholar

[27] Stocks-Fischer, S., Galinat, J.K., Bang, S.S., 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571.

DOI: 10.1016/s0038-0717(99)00082-6

Google Scholar

[28] van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of geotechnical and geoenvironmental engineering, 136(12), 1721-1728.

DOI: 10.1061/(asce)gt.1943-5606.0000382

Google Scholar

[29] Zhao X, Wang M, Wang H, Tang D, Huang J, Sun Y (2019) Study on theremediation of Cd pollution by the biomineralization of urea.

Google Scholar

[30] Imran MA, Kimura S, Nakashima K, Evelpidou N, Kawasaki S. Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method. Appl. Sci. 2019;9:4462.

DOI: 10.3390/app9204462

Google Scholar

[31] Deng, W., & Wang, Y. (2018). Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Advances in civil Engineering, 2018.‏

DOI: 10.1155/2018/9590653

Google Scholar

[32] Zhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9), 229.‏

DOI: 10.1007/s12665-023-10899-y

Google Scholar

[33] Duarte-Nass, C., Rebolledo, K., Valenzuela, T., Kopp, M., Jeison, D., Rivas, M., ... & Ciudad, G. (2020). Application of microbe-induced carbonate precipitation for copper removal from copper-enriched waters: Challenges to future industrial application. Journal of environmental management, 256, 109938.‏

DOI: 10.1016/j.jenvman.2019.109938

Google Scholar

[34] Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and building materials, 102, 349-357.‏

DOI: 10.1016/j.conbuildmat.2015.11.006

Google Scholar

[35] Pandit, J., & Sharma, A. K. (2022). Urbanization's environmental imprint: A review. Environment Conservation Journal, 23(3), 168-177.‏

Google Scholar

[36] Erdogan, N., & Eken, H. A. (2017). Precipitated calcium carbonate production, synthesis and properties. Physicochemical Problems of Mineral Processing, 53.‏

Google Scholar

[37] Witte, C. P. (2011). Urea metabolism in plants. Plant Science, 180(3), 431-438.‏

Google Scholar

[38] Chen, H.-J., Huang, Y.-H., Chen, C.-C., Maity, J.P., Chen, C.-Y., 2019. Microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea. Waste Biomass Valorization. 10 (10), 2887–2895.

DOI: 10.1007/s12649-018-0324-8

Google Scholar

[39] Comadran-Casas, C., Schaschke, C. J., Akunna, J. C., & Jorat, M. E. (2022). Cow urine as a source of nutrients for Microbial-Induced Calcite Precipitation in sandy soil. Journal of Environmental Management, 304, 114307.‏

DOI: 10.1016/j.jenvman.2021.114307

Google Scholar

[40] Mujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537.‏

DOI: 10.1080/01490451.2016.1225866

Google Scholar

[41] Liu, B., Tang, C. S., Pan, X. H., Zhu, C., Cheng, Y. J., Xu, J. J., & Shi, B. (2021). Potential drought mitigation through microbial induced calcite precipitation‐MICP. Water Resources Research, 57(9), e2020WR029434.‏

DOI: 10.1029/2020wr029434

Google Scholar

[42] Choi, S. G., J. Chu, R. C. Brown, K. J. Wang, and Z. Y. Wen. 2017.Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derivedfrom Pyrolysis of Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering 5 (8):7449.

DOI: 10.1021/acssuschemeng.7b02137

Google Scholar

[43] Liu, L., H. Liu, Y. Xiao, J. Chu, P. Xiao, and Y. Wang. 2017.Biocementation of Calcareous Sand Using Soluble Calcium Derivedfrom Calcareous Sand. Bulletin of Engineering Geology & theEnvironment 76 :1–11.

DOI: 10.1007/s10064-017-1106-4

Google Scholar

[44] Cheng, L., M. A. Shahin, and R. Cord-Ruwisch. 2014. Bio-cementationof Sandy Soil Using Microbially Induced Carbonate Precipitation for Marine Environments. s. Geotechnique 64 (12):1010–1013.

DOI: 10.1680/geot.14.t.025

Google Scholar

[45] Choi, S. G., Wu, S., & Chu, J. (2016). Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering, 142(10), 06016010.

DOI: 10.1061/(asce)gt.1943-5606.0001534

Google Scholar

[46] Sugata, M., Widjajakusuma, J., Augestasia, A., Zacharia, A., & Tan, T. J. (2020, June). The use of eggshell powder as calcium source in stabilizing expansive soil using Bacillus subtilis. In Journal of Physics: Conference Series (Vol. 1567, No. 3, p.032058). IOP Publishing.

DOI: 10.1088/1742-6596/1567/3/032058

Google Scholar

[47] Seesanong, S., Wongchompoo, Y., Boonchom, B., Sronsri, C., Laohavisuti, N., Chaiseeda, K., & Boonmee, W. (2022). Economical and environmentally friendly track of biowaste recycling of scallop shells to calcium lactate. ACS omega, 7(17), 14756-14764.

DOI: 10.1021/acsomega.2c00112

Google Scholar

[48] Meng, H., Shu, S., Gao, Y., He, J., & Wan, Y. (2021). Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation. Acta Geotechnica, 16(12), 4045-4059.

DOI: 10.1007/s11440-021-01334-2

Google Scholar

[49] Liang, S., Chen, J., Niu, J., Gong, X., & Feng, D. (2020). Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources & Geotechnology, 38(4), 393-399.‏

DOI: 10.1080/1064119x.2019.1575939

Google Scholar

[50] Lambert, S. E., & Randall, D. G. (2019). Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water research, 160, 158-166.‏

DOI: 10.1016/j.watres.2019.05.069

Google Scholar

[51] Gowthaman, S., Koizumi, H., Nakashima, K., & Kawasaki, S. (2023). Field experimentation of bio-cementation using low-cost cementation media for preservation of slope surface. Case Studies in Construction Materials, 18, e02086.

DOI: 10.1016/j.cscm.2023.e02086

Google Scholar

[52] Holeček, P., Kliková, K., Koňáková, D., Stiborová, H., & Nežerka, V. (2024). Ureolytic bacteria-assisted recycling of waste concrete fines. Powder Technology, 434, 119310.

DOI: 10.1016/j.powtec.2023.119310

Google Scholar

[53] Amiri, A., & Bundur, Z. B. (2018). Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance. Construction and Building Materials, 165, 655-662.

DOI: 10.1016/j.conbuildmat.2018.01.070

Google Scholar

[54] Avramenko, M., Nakashima, K., Takano, C., & Kawasaki, S. (2023). Eco-friendly soil stabilization method using fish bone as cement material. Science of The Total Environment, 900, 165823.

DOI: 10.1016/j.scitotenv.2023.165823

Google Scholar

[55] Paul, V.G., Wronkiewicz, D.J., & Mormile, M.R. (2017). Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration. Applied geochemistry, 78, 250-271.

DOI: 10.1016/j.apgeochem.2017.01.010

Google Scholar

[56] Osinubi, K. J., Eberemu, A. O., Ijimdiya, T. S., Yakubu, S. E., Gadzama, E. W., Sani, J. E., & Yohanna, P. (2020). Review of the use of microorganisms in geotechnical engineering applications. SN Applied Sciences, 2, 1-19.

DOI: 10.1007/s42452-020-1974-2

Google Scholar

[57] Raheem, L. S., & Khadim, H. J. (2024). Microbial-induced carbonate precipitation using eggshells and scallop shells as recycled materials. Case Studies in Chemical and Environmental Engineering, 10, 100867.

DOI: 10.1016/j.cscee.2024.100867

Google Scholar

[58] Khadim, H.J., Ebrahim, S.E., & Ammai, S. H. (2022, October). Sand bioconsolidation/ biosolidification by microbially induced carbonate precipitation using ureolytic bacteria. In AIP Conference Proceedings (Vol. 2398, No. 1, p.040022). AIP Publishing LLC.

DOI: 10.1063/5.0093407

Google Scholar