High-Strength Multifunctional Conducting Polymer Hydrogels

Article Preview

Abstract:

A simple and versatile method has been invented to fabricate conducting polymer hydrogels via supramolecular self-assembly between polymers and multivalent cations. As-prepared hydrogels composed of poly(3,4-ethylenedioxythiophene) and poly(styrenesulfonate) (PEDOT-PSS) exhibit expanded-coil conformation in polymer chains, phase-separate at nanometer scale, possess controllable microstructure, and is responsive to external stimulus. The conducting PEDOT-PSS hydrogels have then been introduced into multiple-network hydrogels to obtain composite hydrogels combining enhanced mechanical strength and excellent electrical activity. Triple-network (TN) and special double-network (sDN) hydrogels, containing poly(acrylic acid) (PAA) and poly(acrylamide) (PAAm) as the matrix respectively, are successfully prepared. Finally, PEDOT-PSS hydrogels with self-strengthening function are directly fabricated via a one-step process under optimized conditions. The strengthening mechanisms for each kind of hydrogels are proposed, and the applicability in electrosensors, supercapacitors and electromechanical actuators are briefly demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

117-120

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Calvert: Adv. Mater. 21 (2009) 743.

Google Scholar

[2] G. Justin and A. Guiseppi-Elie: Biomacromolecules 10 (2009) 2539.

Google Scholar

[3] L. Chen, B. S. Kim, M. Nishino, J. P. Gong and Y. Osada: Macromolecules 33 (2000) 1232.

Google Scholar

[4] T. Jana and A. K. Nandi: Langmuir 16 (2000) 3141.

Google Scholar

[5] D. J. Irvin, S. H. Goods and L. L. Whinnery: Chem Mater 13 (2001) 1143.

Google Scholar

[6] M. Dobbelin, R. Marcilla, M. Salsamendi et al.: Chem. Mater. 19 (2007) 2147.

Google Scholar

[7] X. Crispin, F. L. E. Jakobsson, A. Crispin et al.: Chem. Mater. 18 (2006) 4354.

Google Scholar

[8] D. Li and R. B. Kaner, J. Am. Chem. Soc. 128 (2006) 968.

Google Scholar

[9] A. I. Campbell, V. J. Anderson, J. S. v. Duijneveldt et al.: Phys. Rev. Lett. 94 (2005) 208301.

Google Scholar

[10] J. Y. Ouyang, C. W. Chu, F. C. Chen, Q. F. Xu, Y. Yang: Adv. Funct. Mater. 15 (2005) 203.

Google Scholar

[11] A. Nakayama, A. Kakugo, J. P. Gong et al.: Adv. Funct. Mater. 14 (2004) 1124.

Google Scholar

[12] J. Lin, Q. Tang, J. Wu, S. Hao: React. Funct. Polym. 67 (2007) 275.

Google Scholar

[13] Z. Liu, P. Calvert: Adv. Mater. 12 (2000) 288.

Google Scholar