Inverse Regression Analysis Method to Determine Mathematical Model of Dislocation Density Using Flow Stress Curves

Article Preview

Abstract:

The flow stress curves of Q345B microalloyed steel during hot compression deformation were obtained at 900-1100°C and strain rates of 0.01-10s-1 on Gleeble-3500 thermo-mechanical simulator. Based on the experimental results, a inverse regression analysis method was proposed to determine the mathematical model of dislocation density and its correlation coefficients using the flow stress curves, so as to laid the foundations for calculating carbonitrides precipitates, deformation resistance and the end-rolled strength of microalloyed steels during hot rolling precisely. The effects of the deformation parameters (strain rate and deformation temperature) and microstructural evolution (work-hardening, dynamic recovery and dynamic recrystallization) on dislocation density were taken into account. Finally, the validity of the proposed model is discussed considering the plausibility of the parameters assessed for evaluating the dislocation density. It was proved that the model was reasonable and it could provide a guide to production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

358-364

Citation:

Online since:

August 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. J. Liu, J. J. Jonas: Metallurgica Transactions. Vol. 20A (1989), pp.689-697.

Google Scholar

[2] S. F. Medina, M. I. Vega, M. Gomez, P. P. Gomez: ISIJ Internationa. Vol. 45 (2005), pp.1307-1315.

Google Scholar

[3] H. S. Zurob, Y. Brechet, G. Purdy: Acta Meterials. Vol. 49(2001), pp.4183-4190.

Google Scholar

[4] S. Xiang, G. Q. Liu, Q. L. Han, A. D Wang: Chinese Journal of Materials Research. Vol. 21(2007), pp.250-254.

Google Scholar

[5] A. Yoshie, T. Fujita, M. Fujioka , K. Okamoto , H. Morikawa: ISIJ International. Vol. 36(1996), pp.474-480.

DOI: 10.2355/isijinternational.36.474

Google Scholar

[6] R. Sandstrom: Acta Metallurgica. Vol. 25(1977), pp.897-904.

Google Scholar

[7] F. J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena ( Pergamon Press, Oxford 1995. ).

Google Scholar

[8] X. H. Wang: Matlab6. 1 Latest Application Details(China Water Conservancy and Hydropower Press, China 2001).

Google Scholar

[9] P. D. Hodgson, R. K. Gibbs: ISIJ International. Vol. 36(1996), pp.1507-1515.

Google Scholar

[10] P. D. Hodgson, R. K. Gibbs: ISIJ International. Vol. 32(1992), pp.1329-1338.

Google Scholar

[11] P. A. Manohar, L. Kyuhwan, A. D. Rollett, A. D. Rollett, L. Youngseog: ISIJ International. Vol. 43(2003), pp.1421-1430.

Google Scholar

[12] H. J. McQueen, W. A. Wong, J. J. Jonas: Acta Metallurgica. Vol. 15(1967), pp.586-588.

Google Scholar

[13] K. V. Gow, R. W. Cahn: Acta Metallurgica. Vol. 1(1953), pp.238-241.

Google Scholar

[14] S. Takeuchi, A. S. Argon: Acta Metallurgica. Vol. 24(1976), pp.883-889.

Google Scholar

[15] J. J. Gilman, W. G. Johnston: Solid State Physics. Vol. 13(1962), pp.147-222.

Google Scholar

[16] J. R. Patel, B. H. Alexander: Acta Metallurgica. Vol. 4(1956), pp.385-395.

Google Scholar