Photocatalytic Degradation of Methyl Orange on Y Zeolite Supported TiO2

Article Preview

Abstract:

The photocatalytic activity of TiO2/Y photocatalyst was investigated. The experimental results showed that the activity of TiO2/Y photocatalyst prepared by sol-gel method was greatly affected by calcination temperature and the nature of Y-zeolite. Photocatalytic degradation efficiency increased with increasing content of TiO2 on NaY zeolite and reached its maximum rate of 12.4% when TiO2 content was 90%. When TiO2 content was in the range of 50% to 90% , the activity of TiO2/HY was better than pure TiO2. The activity of TiO2/FeY was comparatively low in the TiO2 content range of 50-90%. The enhancement of photocatalytic activity of TiO2 after loading on Y zeolite is not appreciable, indicating that Y type zeolite is not a promising support for TiO2 prepared by sol-gel method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

733-737

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chatterjee, S. Dasgupta: J. Photochem. Photobiol. C Vol. 6 (2005), p.186.

Google Scholar

[2] V. Ramaswamy, N.B. Jagtap, S. Vijayanand, D.S. Bhange, P.S. Awati: Mater. Res. Bull. Vol. 43 (2008), p.1145.

Google Scholar

[3] A. Fujishima, T.N. Rao, D.A. Tryk: J. Photochem. Photobio. C Vol. 1 (2000) , p.1.

Google Scholar

[4] R.M. Mohamed, A.A. Ismail, I. Othmanb, I.A. Ibrahim: J. Mol. Catal. A Vol. 238 (2005), p.151.

Google Scholar

[5] W.J. Zhang, Y. Li, F.H. Wang: J. Mater. Sci. Technol. Vol. 18 (2002) , p.101.

Google Scholar

[6] R. Portela, M.C. Canela, B. Sanchez, F.C. Marques, A.M. Stumbo, R.F. Tessinari, J.M. Coronado, S. Suarez: Appl. Catal. B Vol. 84 (2008), p.643.

Google Scholar

[7] J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller: J. Phys. Chem. Vol. 99 (1995), p.5633.

Google Scholar

[8] M. Mahalakshmi, S.V. Priya, B. Arabindoo, M. Palanichamy, V. Murugesan: J. Hazard. Mater. Vol. 161 (2009), p.336.

Google Scholar

[9] K. Yamaguchi, K. Inumaru, Y. Oumi, T. Sano, S. Yamanaka: Micropor. Mesopor. Mater. Vol. 117 (2009), p.350.

Google Scholar

[10] K. Tanaka, J. Fukuyoshi, H. Segawa, K. Yoshida: J. Hazard. Mater. Vol. 137 (2006), p.947.

Google Scholar

[11] H. Chen, A. Matsumoto, N. Nishimiya, K. Tsutsumi: Colloids Surf. Vol. 157 (1999), p.295.

Google Scholar

[12] X. Liu, K. Kong Iu, J.K. Thomas: Chem. Phys. Lett. Vol. 195 (1992), p.163.

Google Scholar

[13] X. Liu, K. Kong Iu, J.K. Thomas: J. Chem. Soc. Faraday. Trans. Vol. 89 (1993), p.1861.

Google Scholar

[14] V. Durga Kumari, M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, K. Tanaka: Appl. Catal. A Vol. 234 (2002), p.155.

Google Scholar

[15] M.V. Phanikrishna Sharma, K. Lalitha, V. Durga Kumari, M. Subrahmanyam: Sol. Energy Mater. Sol. Cells Vol. 92 (2008), p.332.

DOI: 10.1016/j.solmat.2008.03.017

Google Scholar

[16] M.V. Phanikrishna Sharma, V. Durga Kumari, M. Subrahmanyam: J. Hazard. Mater. Vol. 160 (2008), p.568.

Google Scholar

[17] M.V. Phanikrishna Sharma, V. Durga Kumari, M. Subrahmanyam: Chemosphere Vol. 72 (2008), p.644.

Google Scholar

[18] M. Nikazar, K. Gholivand, K. Mahanpoor: Desalination Vol. 219 (2008), p.293.

Google Scholar