TiO2-HY(FeY) Composites Used as Photocatalysts on Methyl Orange Degradation

Article Preview

Abstract:

Photocatalytic activity of simple mixture of TiO2 and HY(FeY), and TiO2-HY(FeY) composite prepared by solid-state dispersion method were investigated to study the effect of Y zeolite addition on TiO2 activity. Methyl orane degradation rate increased sharply with increasing TiO2 amount at low photocatalyst concentration until it reached the maximum value when TiO2 concentration was 200 mg/l. In the wide range of HY(FeY) content, TiO2-HY(FeY) composite prepared by solid-state dispersion method showed weaker photocatalytic activity on methyl orange degradation compared with pure TiO2. When TiO2:HY ratio was 10:5, the maximum methyl orange degradation rate was 51.2% in the simple mixture of TiO2 and HY. When TiO2:FeY ratio was 10:7 in the simple mixture of TiO2 and FeY, the optimum methyl orange degradation rate was 60.9%, which was a little higher than that of TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

848-852

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hagfeldt, M. Gratzel: Chem. Review Vol. 95 (1995), p.49.

Google Scholar

[2] M.R. Hoffmann, S.T. Martin, W. Choi, W. Bahnemann: Chem. Review Vol. 95 (1995), p.69.

Google Scholar

[3] A. Fujishima, T.N. Rao, D.A. Tryk: J. Photochem. Photobio. C Vol. 1 (2000), p.1.

Google Scholar

[4] W.Y. Gan, H. Zhao, R. Amal: Appl. Catal. A Vol. 354 (2009), p.8.

Google Scholar

[5] W.J. Zhang, Y. Li, F.H. Wang: J. Mater. Sci. Technol. Vol. 18 (2002), p.101.

Google Scholar

[6] N. Manouchehr, G. Khodayar, M. Kazem: Desalination Vol. 219 (2008), p.293.

Google Scholar

[7] J. Schwitzgebel, J.G. Ekerdt, H. Gerischer: J. Phys. Chem. Vol. 99 (1995), p.5633.

Google Scholar

[8] T.A. McMurray, P. Dunlop, J.A. Byrne: J. Photochem. Photobio. A Vol. 182 (2006), p.43.

Google Scholar

[9] Z.S. Guan, X.T. Zhang, Y. Ma, Y.A. Cao, J.N. Yao: J. Mater. Res. Vol. 16 (2001), p.907.

Google Scholar

[10] H. Yahiro, T. Miyamoto, N. Watanabe, H. Yamaura: Catal. Today Vol. 120 (2007), p.158.

Google Scholar

[11] S. Anandan, M. Yoon: J. Photochem. Photobio. C Vol. 4 (2003), p.5.

Google Scholar

[12] K. Tanaka, J. Fukuyoshi, H. Segawac, K. Yoshida: J. Hazardous Mater. B Vol. 137 (2006), p.947.

Google Scholar

[13] G. Li, X.S. Zhao, M.B. Ray: Sepa. Puri. Technol. Vol. 55 (2007), p.91.

Google Scholar

[14] X.X. Wang, W.H. Lian, X.Z. Fu, J.M. Basset, F. Lefebvre: J. Catal. Vol. 238 (2006), p.13.

Google Scholar

[15] E. Amereh, S. Afshar: Mater. Chem. Phy. Vol. 120 (2010), p.356.

Google Scholar